Generators of Hecke Ring for Gelfand Pair (S(2n), B(n))

Kürşat Aker, Feza Gürsey Institute - M. B. Can, Tulane Uni.

Finite Groups and Their Automorphisms, Istanbul 2011-06-10 Friday

CENTER OF THE GROUP RING AS A VECTOR SPACE

To study a given group G, we can study its irreducible

- representations and
- characters.

Center of the group ring plays a fundamental role.

- Character table of G is the change of basis matrix from irreducible characters to conjugacy class sums - two basis of the center of group ring.

Many properties of the group G can be read from its character table.

What about the center of $\mathbb{Z} G$ as a Ring?

Theorem (Farahat-Higman, 1959)

Let \mathcal{Z}_{n} be the the center of integral symmetric group ring, $\mathbb{Z S}(n)$. Then, the ring \mathcal{Z}_{n} is generated by the elements

$$
Z_{i}:=\sum_{\text {whas exactly } i \text { cycles }} w \text { for } i=1, \ldots, n .
$$

Cycle Decomposition

- $(1,3)(5,2,6,4) \in S(6)$ is of cycle type $(4,2)$ and has 2 cycles,
- $(1,3)(5,2,6,4) \in S(7)$ is of cycle type $(4,2,1)$ and has 3 cycles, since $(1,3)(5,2,6,4)=(1,3)(5,2,6,4)(7)$.

Consequences

- Nakayama's conjecture

Let p be a prime number. Given two partitions λ and μ of n, then $\chi^{\lambda} \equiv \chi^{\mu}(\bmod p)$ if and only if λ, μ have the same p-core.

LATER DEVELOPMENTS

- Jucys, 1974: $Z_{i}=e_{n-i}\left(J_{1}, J_{2}, \ldots, J_{n}\right)$ for $n=1,2, \ldots, n$.
$J_{k}:=\sum$ transpositions in $S(k)-\sum$ transpositions in $S(k-1)$.
- Murphy, 1984:

Young's Seminormal representations using YJM elements

- Vershik-Okounkov, 1995:

Representation theory of $S(n)$ by induction on n

Farahat-Higman

Idea of the proof:
Let n go to infinity and get rid off all accidental relations.

Center \rightarrow Hecke: Gelfand Pairs

Definition (Gelfand Pairs)

A pair (G, K) is called a Gelfand pair

- if 1_{K}^{G} is multiplicity-free,
- or equivalently if $E n d_{G}\left(1_{K}^{G}\right)$ is commutative.

We call the latter algebra Hecke algebra.
Example (All groups are Gelfand Pairs!)
The pair $(G \times G, \Delta G)$ is Gelfand:

- $1_{\Delta G}^{G \times G} \cong \oplus_{V_{i}} V_{i}^{*} \otimes V_{i}$,
- $\operatorname{End}_{G \times G}\left(1_{\Delta G}^{G \times G}\right) \cong \mathcal{Z}(\mathbb{Z} G)$.

$(S(2 n), B(n))$ IS A Gelfand pair:

- $S(2 n)$, symmetric group on $2 n$ letters,
- $B(n)$, centralizer of the element

$$
t:=(1,2)(3,4) \cdots(2 n-1,2 n)
$$

- $1_{B(n)}^{S(2 n)} \cong \oplus_{\lambda \vdash n} S^{2 \lambda}$, where $2 \lambda=\left(2 \lambda_{1}, 2 \lambda_{2}, 2 \lambda_{3}, \ldots\right)$,
- Set $\mathcal{H}_{n}:=\operatorname{End}_{S(2 n)}\left(1_{B(n)}^{S(2 n)}\right)$.

Groups to Gelfand Pairs: A Dictionary

Replace

- Conjugacy classes (sums) by double cosets (sums),
- Irreducible characters by spherical functions.

MULTIPLICATION IN THE CENTER OF $\mathbb{Z} G$

Given two conjugacy classes/class sums C_{λ}, C_{μ} in $\mathcal{Z}(\mathbb{Z} G)$, the product $C_{\lambda} C_{\mu}$ has the following expansion:

$$
C_{\lambda} C_{\mu}=\sum_{\nu} a_{\lambda \mu}^{\nu} C_{\nu},
$$

where, C_{ν} runs over all possible conjugacy classes.
Fix any element $z \in C_{\nu}$, then

$$
a_{\lambda \mu}^{\nu}:=\left\{(x, y) \mid x y=z, x \in C_{\lambda}, y \in C_{\mu}\right\} .
$$

Multiplication in a Hecke ring

Given two double coset sums K_{λ}, K_{μ} in a Hecke ring, the product $K_{\lambda} K_{\mu}$ has the following expansion:

$$
K_{\lambda} K_{\mu}=\sum_{\nu} b_{\lambda \mu}^{\nu} K_{\nu},
$$

where, K_{ν} runs over all possible double cosets.
Fix any element $z \in K_{\nu}$, then

$$
b_{\lambda \mu}^{\nu}:=\left\{(x, y) \mid x y=z, x \in K_{\lambda}, y \in K_{\mu}\right\} .
$$

INVARIANTS OF $w \in S(2 n)$ WITH RESPECT TO $B(n)$

$$
w=\left(\begin{array}{llllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
1 & 7 & 2 & 8 & 6 & 4 & 10 & 3 & 9 & 5 & 12 & 11
\end{array}\right)
$$

Figure: Coset Type (3,2,1) with 3 circuits

An Analogue of FH for $(S(2 n), B(n))$

Theorem (A. - Can, 2010)
The ring \mathcal{H}_{n} is generated by the elements

$$
H_{i}:=\sum_{\text {whas exactly } i \text { circuits }} w \text { for } i=1, \ldots, n .
$$

In TERMS OF YJM ELEMENTS

Recall that Jucys proved that

$$
Z_{i}=e_{n-i}\left(J_{1}, J_{2}, \ldots, J_{n}\right)
$$

for $n=1,2, \ldots, n$.
Recently, Zinn-Justin and Matsumoto proved that

$$
H_{i}=e_{n-i}\left(J_{1}, J_{3}, \ldots, J_{2 n-1}\right) e_{B(n)}
$$

for $n=1,2, \ldots, n$.

