Generators of Hecke Ring for Gelfand Pair (S(2n), B(n))

Kürşat Aker, Feza Gürsey Institute - M. B. Can, Tulane Uni.

Finite Groups and Their Automorphisms, Istanbul 2011-06-10 Friday

・ロト・(型ト・モート・モー のへぐ)

CENTER OF THE GROUP RING AS A VECTOR SPACE

To study a given group *G*, we *can* study its *irreducible*

- representations and
- characters.

Center of the group ring plays a fundamental role.

 Character table of *G* is the change of basis matrix from irreducible characters to conjugacy class sums - two basis of the center of group ring.

Many properties of the group *G* can be read from its character table.

What about the center of $\mathbb{Z}G$ as a ring?

Theorem (Farahat-Higman, 1959)

Let Z_n be the the center of integral symmetric group ring, $\mathbb{Z}S(n)$. Then, the ring Z_n is generated by the elements

$$Z_i := \sum_{w \text{ has exactly } i \text{ cycles}} w \text{ for } i = 1, \dots, n.$$

Cycle Decomposition

- ▶ $(1,3)(5,2,6,4) \in S(6)$ is of cycle type (4,2) and has **2** cycles,
- (1,3)(5,2,6,4) ∈ S(7) is of cycle type (4,2,1) and has 3 cycles, since (1,3)(5,2,6,4)=(1,3)(5,2,6,4)(7).

< ロ > < 同 > < 三 > < 三 > 、 三 < の < 0</p>

CONSEQUENCES

Nakayama's conjecture

Let *p* be a prime number. Given two partitions λ and μ of *n*, then $\chi^{\lambda} \equiv \chi^{\mu} \pmod{p}$ if and only if λ, μ have the same *p*-core.

▲ロト ▲ 理 ト ▲ 王 ト ▲ 王 - の Q (~

LATER DEVELOPMENTS

- Jucys, 1974: $Z_i = e_{n-i}(J_1, J_2, \dots, J_n)$ for $n = 1, 2, \dots, n$.
 - $J_k := \sum$ transpositions in $S(k) \sum$ transpositions in S(k-1).
- ► Murphy, 1984:

Young's Seminormal representations using YJM elements

Vershik-Okounkov, 1995:
 Representation theory of *S*(*n*) by induction on *n*

FARAHAT-HIGMAN

Idea of the proof:

Let *n* go to **infinity** and get rid off all **accidental** relations.

CENTER \rightarrow Hecke: Gelfand Pairs

Definition (Gelfand Pairs)

A pair (G, K) is called a *Gelfand pair*

- if 1_K^G is multiplicity-free,
- or equivalently if $End_G(1_K^G)$ is commutative.

We call the latter algebra *Hecke* algebra.

Example (All groups are Gelfand Pairs!)

The pair $(G \times G, \Delta G)$ is Gelfand:

 $\blacktriangleright \ 1_{\Delta G}^{G \times G} \cong \oplus_{V_i} V_i^* \otimes V_i,$

•
$$End_{G\times G}(1^{G\times G}_{\Delta G})\cong \mathcal{Z}(\mathbb{Z}G).$$

・ロト ・ 直 ト ・ 三 ト ・ 三 ・ つへぐ

(S(2n), B(n)) is a Gelfand pair:

- S(2n), symmetric group on 2n letters,
- B(n), centralizer of the element

$$t := (1,2)(3,4)\cdots(2n-1,2n).$$

►
$$1_{B(n)}^{S(2n)} \cong \bigoplus_{\lambda \vdash n} S^{2\lambda}$$
, where $2\lambda = (2\lambda_1, 2\lambda_2, 2\lambda_3, \ldots)$,
► Set $\mathcal{H}_n := End_{S(2n)}(1_{B(n)}^{S(2n)})$.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − ����

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

GROUPS TO GELFAND PAIRS: A DICTIONARY

Replace

- ► Conjugacy classes (sums) by double cosets (sums),
- ► Irreducible characters by spherical functions.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Multiplication in the center of $\mathbb{Z}G$

Given two conjugacy classes/class sums C_{λ} , C_{μ} in $\mathcal{Z}(\mathbb{Z}G)$, the product $C_{\lambda}C_{\mu}$ has the following expansion:

$$C_{\lambda}C_{\mu}=\sum_{\nu}a_{\lambda\mu}^{\nu}C_{\nu},$$

where, C_{ν} runs over all possible conjugacy classes. Fix any element $z \in C_{\nu}$, then

$$a_{\lambda\mu}^{\nu} := \{(x,y) | xy = z, x \in C_{\lambda}, y \in C_{\mu}\}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

MULTIPLICATION IN A HECKE RING

Given two double coset sums K_{λ} , K_{μ} in a Hecke ring, the product $K_{\lambda}K_{\mu}$ has the following expansion:

$$K_{\lambda}K_{\mu} = \sum_{
u} b^{
u}_{\lambda\mu}K_{
u},$$

where, K_{ν} runs over all possible double cosets. Fix any element $z \in K_{\nu}$, then

$$b_{\lambda\mu}^{\nu} := \{(x,y) | xy = z, x \in K_{\lambda}, y \in K_{\mu}\}.$$

Invariants of $w \in S(2n)$ with respect to B(n)

Figure: Coset Type (3, 2, 1) with 3 circuits

An Analogue of FH for (S(2n), B(n))

Theorem (A. - Can, 2010)

The ring \mathcal{H}_n *is generated by the elements*

$$H_i := \sum_{w \text{ has exactly } i \text{ circuits}} w \text{ for } i = 1, \dots, n.$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

IN TERMS OF YJM ELEMENTS

Recall that Jucys proved that

$$Z_i = e_{n-i}(J_1, J_2, \ldots, J_n)$$

for n = 1, 2, ..., n. Recently, Zinn-Justin and Matsumoto proved that

$$H_i = e_{n-i}(J_1, J_3, \dots, J_{2n-1})e_{B(n)}$$

for n = 1, 2, ..., n.