Parabolic triple factorisations and their associated geometries

S. Hassan Alavi

(joint work with Cheryl E. Praeger and John Bamberg)

The University of Western Australia
Workshop on Finite Groups and Their Automorphisms Boğazicci University

June 7-11, 2011, İstanbul, Turkey

Triple factorisations

Definition

For a finite group G, a triple $\mathcal{T}=(G, A, B)$ is called a triple factorisation if $G=A B A$, where $A, B \leq G$.

- $G=A B$ or $B A: \mathcal{T}$ is a degenerate triple factorisation.
- $G \neq A B: \mathcal{T}$ is a nondegenerate triple factorisation.

A group with triple factorisation $\mathcal{T}=(G, A, B)$ is sometimes called an $A B A$-group.

Triple factorisations

Definition

For a finite group G, a triple $\mathcal{T}=(G, A, B)$ is called a triple factorisation if $G=A B A$, where $A, B \leq G$.

- $G=A B$ or $B A: \mathcal{T}$ is a degenerate triple factorisation.
- $G \neq A B$: \mathcal{T} is a nondegenerate triple factorisation.

A group with triple factorisation $\mathcal{T}=(G, A, B)$ is sometimes called

Triple factorisations

Definition

For a finite group G, a triple $\mathcal{T}=(G, A, B)$ is called a triple factorisation if $G=A B A$, where $A, B \leq G$.

- $G=A B$ or $B A: \mathcal{T}$ is a degenerate triple factorisation.
- $G \neq A B: \mathcal{T}$ is a nondegenerate triple factorisation.

A group with triple factorisation $\mathcal{T}=(G, A, B)$ is sometimes called

Triple factorisations

Definition

For a finite group G, a triple $\mathcal{T}=(G, A, B)$ is called a triple factorisation if $G=A B A$, where $A, B \leq G$.

- $G=A B$ or $B A: \mathcal{T}$ is a degenerate triple factorisation.
- $G \neq A B: \mathcal{T}$ is a nondegenerate triple factorisation.

A group with triple factorisation $\mathcal{T}=(G, A, B)$ is sometimes called an $A B A$-group.

Triple factorisations

Definition

For a finite group G, a triple $\mathcal{T}=(G, A, B)$ is called a triple factorisation if $G=A B A$, where $A, B \leq G$.

- $G=A B$ or $B A: \mathcal{T}$ is a degenerate triple factorisation.
- $G \neq A B: \mathcal{T}$ is a nondegenerate triple factorisation.

A group with triple factorisation $\mathcal{T}=(G, A, B)$ is sometimes called an $A B A$-group.

Notation
TF:=triple factorisation

Why?

Lie theory
$B N$-pairs: If G has a $B N$-pair $\Rightarrow G=B N B$ (Bruhat decomposition)
e.g., Chevalley groups and Twisted groups.

Abstract group theory
For $G=A B A$, study group theoretic properties of G from group theoretic properties of A and B.
e.g. Gorenstein-Herstein (1959): A and B with $\operatorname{gcd}(|A|,|B|)=1$ $\Rightarrow G$ is solvable.

Geometry
Higman-McLaughlin (1961): every G-flag-transitive rank 2 geometry gives $G=A B A \Leftrightarrow$ Collinearity property: each pair of points lies on at least on line.

Why?

Lie theory

$B N$-pairs: If G has a $B N$-pair $\Rightarrow G=B N B$ (Bruhat decomposition)
e.g., Chevalley groups and Twisted groups.

Abstract group theory

For $G=A B A$, study group theoretic properties of G from group theoretic properties of A and B.
e.g. Gorenstein-Herstein (1959): A and B with $\operatorname{gcd}(|A|,|B|)=1$ $\Rightarrow G$ is solvable.

Geometry
Higman-McLaughlin (1961): every G-flag-transitive rank 2
geometry gives $G=A B A \Leftrightarrow$

Why?

Lie theory

$B N$-pairs: If G has a $B N$-pair $\Rightarrow G=B N B$ (Bruhat decomposition)
e.g., Chevalley groups and Twisted groups.

Abstract group theory

For $G=A B A$, study group theoretic properties of G from group theoretic properties of A and B.
e.g. Gorenstein-Herstein (1959): A and B with $\operatorname{gcd}(|A|,|B|)=1$ $\Rightarrow G$ is solvable.

Geometry

Higman-McLaughlin (1961): every G-flag-transitive rank 2 geometry gives $G=A B A \Leftrightarrow$

Collinearity property: each pair of points lies on at least on line.

Rank 2 geometries

Notation and Definitions
Suppose that $X=\mathbb{P} \cup \mathbb{L}$ (disjoint union) with

- \mathbb{P} : point set;
- \mathbb{L} : line set;
- Incidence relation $*$ on X : symmetric and reflexive x and y are incident $\Leftrightarrow x * y$, for $x, y \in X$.
- flag: an incident pair (p, ℓ) of π.

Rank 2 geometries

Notation and Definitions
Suppose that $X=\mathbb{P} \cup \mathbb{L}$ (disjoint union) with

- \mathbb{P} : point set;
- \mathbb{L} : line set;
- Incidence relation $*$ on X : symmetric and reflexive

$$
x \text { and } y \text { are incident } \Leftrightarrow x * y \text {, for } x, y \in X
$$

- flag: an incident pair (p, ℓ) of π.

Rank 2 geometry: A triple $\pi:=(\mathbb{P}, \mathbb{L}, *)$ where
(1) two distinct elements of the same type are not incident;
(2) each point lies on a line.

Here, every rank 2 geometry satisfies

- $|\mathbb{P}|$ and $|\mathbb{L}|$ are finite and of size at least 2;
- each point is incident with at least two lines;
- each line is incident with at least two points.

Rank 2 geometries

Notation and Definitions
Suppose that $X=\mathbb{P} \cup \mathbb{L}$ (disjoint union) with

- \mathbb{P} : point set;
- \mathbb{L} : line set;
- Incidence relation $*$ on X : symmetric and reflexive

$$
x \text { and } y \text { are incident } \Leftrightarrow x * y, \text { for } x, y \in X
$$

- flag: an incident pair (p, ℓ) of π.

Rank 2 geometry: A triple $\pi:=(\mathbb{P}, \mathbb{L}, *)$ where
(1) two distinct elements of the same type are not incident;
(2) each point lies on a line.

The dual of $\pi=(\mathbb{P}, \mathbb{L}, *): \pi^{\vee}=(\mathbb{L}, \mathbb{P}, *)$.

- $|\mathbb{P}|$ and $|\mathbb{L}|$ are finite and of size at least 2 ;
- each point is incident with at least two lines;
- each line is incident with at least two points.

Rank 2 geometries

Notation and Definitions
Suppose that $X=\mathbb{P} \cup \mathbb{L}$ (disjoint union) with

- \mathbb{P} : point set;
- \mathbb{L} : line set;
- Incidence relation $*$ on X : symmetric and reflexive

$$
x \text { and } y \text { are incident } \Leftrightarrow x * y, \text { for } x, y \in X
$$

- flag: an incident pair (p, ℓ) of π.

Rank 2 geometry: A triple $\pi:=(\mathbb{P}, \mathbb{L}, *)$ where
(1) two distinct elements of the same type are not incident;
(2) each point lies on a line.

The dual of $\pi=(\mathbb{P}, \mathbb{L}, *): \pi^{\vee}=(\mathbb{L}, \mathbb{P}, *)$.
Here, every rank 2 geometry satisfies

- $|\mathbb{P}|$ and $|\mathbb{L}|$ are finite and of size at least 2 ;
- each point is incident with at least two lines;
- each line is incident with at least two points.

Rank 2 geometries

Coset geometries
Let G be a group with A and B subgroups. Set

- $\mathbb{P}:=\{A x \mid x \in G\}$;
- $\mathbb{L}:=\{B x \mid x \in G\}$;
- $*$ is nonempty intersection:

$$
A x * B y \Leftrightarrow A x \cap B y \neq \varnothing
$$

Then $(\mathbb{P}, \mathbb{L}, *)$ is a rank 2 geometry called coset geometry and denoted by $\operatorname{Cos}(\mathbf{G} ; \mathbf{A}, \mathbf{B})$.

Rank 2 geometries

Coset geometries
Let G be a group with A and B subgroups. Set

- $\mathbb{P}:=\{A x \mid x \in G\}$;
- $\mathbb{L}:=\{B x \mid x \in G\}$;
- $*$ is nonempty intersection:

$$
A x * B y \Leftrightarrow A x \cap B y \neq \varnothing
$$

Then $(\mathbb{P}, \mathbb{L}, *)$ is a rank 2 geometry called coset geometry and denoted by $\operatorname{Cos}(\mathbf{G} ; \mathbf{A}, \mathbf{B})$.

Example

$$
\begin{aligned}
& G=\langle x, y\rangle \cong Z_{4} \times Z_{2}, \\
& A=\left\langle x^{2}\right\rangle \text { and } B=\langle y\rangle, \text { where } \\
& x:=(1,2,3,8)(4,5,6,7) \text { and } \\
& y:=(1,5)(2,6)(3,7)(4,8) ;
\end{aligned}
$$

Rank 2 geometries

Flag-transitive geometries
Let $\pi:=(\mathbb{P}, \mathbb{L}, *)$ be rank 2 geometry, and set $X:=\mathbb{P} \cup \mathbb{L}$.

- An automorphism g of π : a bijection $g: X \rightarrow X$ taking points to points, lines to lines and preserving incidence:

$$
p * \ell \quad \Leftrightarrow \quad(p) g *(\ell) g
$$

- $\operatorname{Aut}(\pi):=\{g \mid g$ is an automorphism of $\pi\}$.
- $G \leq \operatorname{Aut}(\pi)$ acts on points and lines, and so on flags:

$$
(p, \ell)^{g}=((p) g,(\ell) g),(p \in \mathbb{P} \text { and } \ell \in \mathbb{L})
$$

- π is G-flag-transitive: G acts transitively on the set of flags.

Rank 2 geometries

Flag-transitive geometries
Let $\pi:=(\mathbb{P}, \mathbb{L}, *)$ be rank 2 geometry, and set $X:=\mathbb{P} \cup \mathbb{L}$.

- An automorphism g of π : a bijection $g: X \rightarrow X$ taking points to points, lines to lines and preserving incidence:

$$
p * \ell \quad \Leftrightarrow \quad(p) g *(\ell) g
$$

- $\operatorname{Aut}(\pi):=\{g \mid g$ is an automorphism of $\pi\}$.
- $G \leq \operatorname{Aut}(\pi)$ acts on points and lines, and so on flags:

$$
(p, \ell)^{g}=((p) g,(\ell) g),(p \in \mathbb{P} \text { and } \ell \in \mathbb{L})
$$

- π is G-flag-transitive: G acts transitively on the set of flags.
$\operatorname{Cos}(G ; A, B)$ is G - flag-transitive via

$$
(A x, B y)^{g}:=(A x g, B y g)
$$

for all $g \in G, A x \in \mathbb{P}, B y \in \mathbb{L}$.

Rank 2 geometries

Flag-transitive geometries
Let $\pi:=(\mathbb{P}, \mathbb{L}, *)$ be rank 2 geometry, and set $X:=\mathbb{P} \cup \mathbb{L}$.

- An automorphism g of π : a bijection $g: X \rightarrow X$ taking points to points, lines to lines and preserving incidence:

$$
p * \ell \quad \Leftrightarrow \quad(p) g *(\ell) g
$$

- $\operatorname{Aut}(\pi):=\{g \mid g$ is an automorphism of $\pi\}$.
- $G \leq \operatorname{Aut}(\pi)$ acts on points and lines, and so on flags:

$$
(p, \ell)^{g}=((p) g,(\ell) g),(p \in \mathbb{P} \text { and } \ell \in \mathbb{L})
$$

- π is G-flag-transitive: G acts transitively on the set of flags.

Proposition

Let π be rank 2 geometry and $G \leq \operatorname{Aut}(\pi)$. Then π is G-flag transitive $\Leftrightarrow \pi \cong \operatorname{Cos}(G ; A, B)$ for some subgroups A and B.
For a flag (p, ℓ) of $\pi, A:=G_{p}$ and $B:=G_{\ell}$

$$
\pi \cong \operatorname{Cos}\left(G ; G_{p}, G_{\ell}\right)
$$

Triple factorisations and rank 2 geometries

Remark
Each triple factorisation $G=A B A$ gives rise to a G-flag transitive rank 2 geometry, i.e., $\operatorname{Cos}(G ; A, B)$.

Triple factorisations and rank 2 geometries

Remark
Each triple factorisation $G=A B A$ gives rise to a G-flag transitive rank 2 geometry, i.e., $\operatorname{Cos}(G ; A, B)$.

Question 1

Does a G-flag-transitive rank 2 geometry give rise to a TF for G ?

Triple factorisations and rank 2 geometries

Remark

Each triple factorisation $G=A B A$ gives rise to a G-flag transitive rank 2 geometry, i.e., $\operatorname{Cos}(G ; A, B)$.

Question 1

Does a G-flag-transitive rank 2 geometry give rise to a TF for G ?
No: $G \neq A B A$ where $G=\langle x, y\rangle \cong Z_{4} \times Z_{2}$, $A=\left\langle x^{2}\right\rangle$ and $B=\langle y\rangle$,
$x:=(1,2,3,8)(4,5,6,7)$,
$y:=(1,5)(2,6)(3,7)(4,8)$.

Triple factorisations and rank 2 geometries

Remark

Each triple factorisation $G=A B A$ gives rise to a G-flag transitive rank 2 geometry, i.e., $\operatorname{Cos}(G ; A, B)$.

Question 1

Does a G-flag-transitive rank 2 geometry give rise to a TF for G ?
No: $G \neq A B A$ where $G=\langle x, y\rangle \cong Z_{4} \times Z_{2}$,
$A=\left\langle x^{2}\right\rangle$ and $B=\langle y\rangle$,
$x:=(1,2,3,8)(4,5,6,7)$,
$y:=(1,5)(2,6)(3,7)(4,8)$.

Question 2

Under which conditions a G-flag-transitive rank 2 geometry gives rise to a TF for G ?

Collinearly and concurrently connected spaces

Collinearly connected π ：each pair of points lies on at least one line．

A collinearly connected space

Collinearly and concurrently connected spaces

Collinearly connected π : each pair of points lies on at least one line.
Concurrently connected π : each pair of lines meets in at least one point.

A collinearly connected space

A concurrently connected space
π is collinearly connected $\Leftrightarrow \pi^{\vee}$ is concurrently connected.

Collinearly and concurrently connected spaces

Collinearly connected π : each pair of points lies on at least one line.
Concurrently connected π : each pair of lines meets in at least one point.

A collinearly connected space

A concurrently connected space

Example

- All $2-(v, k, \lambda)$ designs are collinearly connected as $\lambda \geq 1$;
- Symmetric designs are both collinearly and concurrently connected.
- Proiective spaces $\operatorname{PG}(n-1, q)$ for $n \geq 4$ are collinearly but not concurrently connected: $V:=\left\langle e_{1}, e_{2}, e_{3}, e_{4}, \ldots, e_{n}\right\rangle$, then two lines $\left\langle e_{1}, e_{2}\right\rangle$ and $\left\langle e_{3}, e_{4}\right\rangle$ do not meet.

Collinearly and concurrently connected spaces

Collinearly connected π : each pair of points lies on at least one line.
Concurrently connected π : each pair of lines meets in at least one point.

A collinearly connected space

A concurrently connected space

Example

- All $2-(v, k, \lambda)$ designs are collinearly connected as $\lambda \geq 1$;
- Symmetric designs are both collinearly and concurrently connected.

Collinearly and concurrently connected spaces

Collinearly connected π : each pair of points lies on at least one line.
Concurrently connected π : each pair of lines meets in at least one point.

A collinearly connected space

A concurrently connected space

Example

- All $2-(v, k, \lambda)$ designs are collinearly connected as $\lambda \geq 1$;
- Symmetric designs are both collinearly and concurrently connected.
- Projective spaces $\operatorname{PG}(n-1, q)$ for $n \geq 4$ are collinearly but not concurrently connected: $V:=\left\langle e_{1}, e_{2}, e_{3}, e_{4}, \ldots, e_{n}\right\rangle$, then two lines $\left\langle e_{1}, e_{2}\right\rangle$ and $\left\langle e_{3}, e_{4}\right\rangle$ do not meet.

Collinearly and concurrently connected spaces

Collinearly connected π : each pair of points lies on at least one line.
Concurrently connected π : each pair of lines meets in at least one point.

A collinearly connected space

A concurrently connected space

Example

The $\operatorname{Cos}(G ; A, B)$ below is neither collinearly, nor concurrently connected:

$$
\begin{aligned}
& G=\langle x, y\rangle \cong Z_{4} \times Z_{2}, \\
& A=\left\langle x^{2}\right\rangle \text { and } B=\langle y\rangle, \\
& x:=(1,2,3,8)(4,5,6,7) ; \\
& y:=(1,5)(2,6)(3,7)(4,8) ;
\end{aligned}
$$

Collinearly and concurrently connected spaces

Collinearly connected π : each pair of points lies on at least one line.
Concurrently connected π : each pair of lines meets in at least one point.

A collinearly connected space

A concurrently connected space

Question 2

Under which conditions a G-flag-transitive rank 2 geometry gives rise to a TF of G ?

Collinearly and concurrently connected spaces

Collinearly connected π : each pair of points lies on at least one line.
Concurrently connected π : each pair of lines meets in at least one point.

A collinearly connected space

A concurrently connected space

Question 2

Under which conditions a G-flag-transitive rank 2 geometry gives rise to a TF of G ?

Higman-McLaughlin Criterion (1961)
(1) $\operatorname{Cos}(G ; A, B)$ is collinearly connected if and only if $G=A B A$;
(2) $\operatorname{Cos}(G ; A, B)$ is concurrently connected if and only if $G=B A B$.

Linear spaces

Higman-McLaughlin (1961)

The following are equivalent:

- G is a Geometric $A B A$-group $(G=A B A, A \nsubseteq B, B \nsubseteq A, A B \cap B A=A \cup B)$;
- $\operatorname{Cos}(G ; A, B)$ is a (G-flag transitive) linear space.

If G is a Geometric $A B A$-group, then G is primitive on right cosets of A : A is maximal.

Question

For a given $\operatorname{TF} \mathcal{T}=(G, A, B)$, is there any reduction pathway to the case where A is maximal? YES (AP-2009)

Parabolic triple factorisations of GL(V)

Let $G:=\mathrm{GL}(V)$. Consider the Grassmannian set $\operatorname{Gr}_{m}(V)$ of all m-subspaces of V.

- For $U \in \operatorname{Gr}_{m}(V)$, the stabiliser subgroup $H:=G_{U}$ of G is a (maximal) parabolic subgroup of G.
- A triple factorisation (G, A, B) with A and B parabolic subgroups is called a parabolic triple factorisation.

Parabolic triple factorisations of GL(V)

Let $G:=\mathrm{GL}(V)$. Consider the Grassmannian set $\operatorname{Gr}_{m}(V)$ of all m-subspaces of V.

- For $U \in \operatorname{Gr}_{m}(V)$, the stabiliser subgroup $H:=G_{U}$ of G is a (maximal) parabolic subgroup of G.
- A triple factorisation (G, A, B) with A and B parabolic subgroups is called a parabolic triple factorisation.

Parabolic triple factorisations of GL(V)

Let $G:=\mathrm{GL}(V)$. Consider the Grassmannian set $\operatorname{Gr}_{m}(V)$ of all m-subspaces of V.

- For $U \in \operatorname{Gr}_{m}(V)$, the stabiliser subgroup $H:=G_{U}$ of G is a (maximal) parabolic subgroup of G.
- A triple factorisation (G, A, B) with A and B parabolic subgroups is called a parabolic triple factorisation.

Theorem
Let $G=\operatorname{GL}(V), A:=G_{U}$ and $B:=G_{W}$ with $U \in \operatorname{Gr}_{m}(V)$ and $W \in \operatorname{Gr}_{k}(V)$, and let $j:=\operatorname{dim}(U \cap W)$. Then

$$
G=A B A \Leftrightarrow j \leq \frac{k}{2}+\max \left\{0, m-\frac{n}{2}\right\} .
$$

(m, k, j)-projective spaces

Notation and Definitions
Let V be a v.s. over a field \mathbb{F}, and let $1 \leq m, k<n$ be positive integers. Let j be positive integer satisfying

$$
\max \{0, m+k-n\} \leq j \leq \min \{m, k\} .
$$

(m, k, j)-projective spaces

Notation and Definitions
Let V be a v.s. over a field \mathbb{F}, and let $1 \leq m, k<n$ be positive integers. Let j be positive integer satisfying

$$
\max \{0, m+k-n\} \leq j \leq \min \{m, k\} .
$$

- $\mathbb{P}:=\operatorname{Gr}_{m}(V)$;
- $\mathbb{L}:=\operatorname{Gr}_{k}(V)$ (if $m=k$, take \mathbb{L} a copy of \mathbb{P})
- Incidence relation $*^{j}$: on $X:=\mathbb{P} \cup \mathbb{L}$ by

$$
U *^{j} W \Leftrightarrow \operatorname{dim}(U \cap W)=j .
$$

- $(\mathbb{P}, \mathbb{L}, *)$ is a rank 2 geometry called $($

(m, k, j)-projective spaces

Notation and Definitions
Let V be a v.s. over a field \mathbb{F}, and let $1 \leq m, k<n$ be positive integers. Let j be positive integer satisfying

$$
\max \{0, m+k-n\} \leq j \leq \min \{m, k\} .
$$

- $\mathbb{P}:=\operatorname{Gr}_{m}(V)$;
- $\mathbb{L}:=\operatorname{Gr}_{k}(V)$ (if $m=k$, take \mathbb{L} a copy of \mathbb{P})
- Incidence relation $*^{j}$: on $X:=\mathbb{P} \cup \mathbb{L}$ by

$$
U *^{j} W \Leftrightarrow \operatorname{dim}(U \cap W)=j .
$$

- ($\mathbb{P}, \mathbb{L}, *)$ is a rank 2 geometry called (m, k, j)-projective space of V and denoted by $\operatorname{Proj}_{(m, k)}^{j}(V)$ or $\operatorname{Proj}_{(m, k)}^{j}(n, \mathbb{F})$.

(m, k, j)-projective spaces

Notation and Definitions
Let V be a v.s. over a field \mathbb{F}, and let $1 \leq m, k<n$ be positive integers. Let j be positive integer satisfying

$$
\max \{0, m+k-n\} \leq j \leq \min \{m, k\} .
$$

- $\mathbb{P}:=\operatorname{Gr}_{m}(V)$;
- $\mathbb{L}:=\operatorname{Gr}_{k}(V)$ (if $m=k$, take \mathbb{L} a copy of \mathbb{P})
- Incidence relation $*^{j}$: on $X:=\mathbb{P} \cup \mathbb{L}$ by

$$
U *^{j} W \Leftrightarrow \operatorname{dim}(U \cap W)=j .
$$

- ($\mathbb{P}, \mathbb{L}, *)$ is a rank 2 geometry called (m, k, j)-projective space of V and denoted by $\operatorname{Proj}_{(m, k)}^{j}(V)$ or $\operatorname{Proj}_{(m, k)}^{j}(n, \mathbb{F})$.

Link to projective geometry

If $j_{0}=\min \{m, k\} \Rightarrow *^{j_{0}}$ is the 'symmetrised inclusion'.

Link to parabolic triple factorisations

- $G:=\mathrm{GL}(V)$ acts transitively on flags of $\operatorname{Proj}_{(m, k)}^{j}(V)$ by $(U, W)^{g}:=((U) g,(W) g)$.
- For a flag (U, W),

where $A:=G_{U}$ and $B:=G_{W}$ are maximal parabolic.
- $\operatorname{Proj}_{(m, K)}^{j}(V)$ is collinearly (concurrently) connected \Leftrightarrow $G=A B A(G=B A B)$ where $A:=G_{U}$ and $B:=G_{W}$ are parabolic.

Theorem (Alavi-Bamberg-Praeger) $\operatorname{Proj}_{(m, k)}^{j}(V)$ is collinearly connected $\Leftrightarrow j \leq \frac{k}{2}+\max \left\{0, m-\frac{n}{2}\right\}$

Link to parabolic triple factorisations

- $G:=\mathrm{GL}(V)$ acts transitively on flags of $\operatorname{Proj}_{(m, k)}^{j}(V)$ by

$$
(U, W)^{g}:=((U) g,(W) g)
$$

- For a flag (U, W),

$$
\operatorname{Proj}_{(m, k)}^{j}(V) \cong \operatorname{Cos}\left(G ; G_{U}, G_{W}\right)
$$

where $A:=G_{U}$ and $B:=G_{W}$ are maximal parabolic.
\square
$G=A B A(G=B A B)$ where $A:=G_{U}$ and $B:=G_{W}$ are parabolic.

Theorem (Alavi-Bamberg-Praeger) $\operatorname{Proj}_{(m, k)}^{j}(V)$ is collinearly connected $\Leftrightarrow j \leq \frac{k}{2}+\max \left\{0, m-\frac{n}{2}\right\}$

Link to parabolic triple factorisations

- $G:=\mathrm{GL}(V)$ acts transitively on flags of $\operatorname{Proj}_{(m, k)}^{j}(V)$ by

$$
(U, W)^{g}:=((U) g,(W) g)
$$

- For a flag (U, W),

$$
\operatorname{Proj}_{(m, k)}^{j}(V) \cong \operatorname{Cos}\left(G ; G_{U}, G_{W}\right)
$$

where $A:=G_{U}$ and $B:=G_{W}$ are maximal parabolic.

- $\operatorname{Proj}_{(m, k)}^{j}(V)$ is collinearly (concurrently) connected \Leftrightarrow $G=A B A(G=B A B)$ where $A:=G_{U}$ and $B:=G_{W}$ are parabolic.

Theorem (Alavi-Bamberg-Praeger)
$\operatorname{Proj}_{(m, k)}^{j}(V)$ is collinearly connected $\Leftrightarrow j \leq \frac{k}{2}+\max \left\{0, m-\frac{n}{2}\right\}$

Link to parabolic triple factorisations

- $G:=\mathrm{GL}(V)$ acts transitively on flags of $\operatorname{Proj}_{(m, k)}^{j}(V)$ by

$$
(U, W)^{g}:=((U) g,(W) g)
$$

- For a flag (U, W),

$$
\operatorname{Proj}_{(m, k)}^{j}(V) \cong \operatorname{Cos}\left(G ; G_{U}, G_{W}\right)
$$

where $A:=G_{U}$ and $B:=G_{W}$ are maximal parabolic.

- $\operatorname{Proj}_{(m, k)}^{j}(V)$ is collinearly (concurrently) connected \Leftrightarrow $G=A B A(G=B A B)$ where $A:=G_{U}$ and $B:=G_{W}$ are parabolic.

Theorem (Alavi-Bamberg-Praeger)
$\operatorname{Proj}_{(m, k)}^{j}(V)$ is collinearly connected $\Leftrightarrow j \leq \frac{k}{2}+\max \left\{0, m-\frac{n}{2}\right\}$.

（m，k，j）－projective spaces

collinearity property
Collinearity property
－For each (m, k) ，there exists possible j such that $\operatorname{Proj}_{(m, k)}^{j}(V)$ is collinearly connected．
－There exist parabolic subgroups A and B such that $G=A B A$
(m,k,j)-projective spaces
collinearity property

Collinearity property

- For each (m, k), there exists possible j such that $\operatorname{Proj}_{(m, k)}^{j}(V)$ is collinearly connected.
- There exist parabolic subgroups A and B such that $G=A B A$

(m,k,j)-projective spaces

collinearity property

Collinearity property

- For each (m, k), there exists possible j such that $\operatorname{Proj}_{(m, k)}^{j}(V)$ is collinearly connected.
- There exist parabolic subgroups A and B such that $G=A B A$
$(1, n-1) \quad(n-1, n-1)$

$(1,1)$
m $\quad(n-1,1)$
For each $(m, k) \in \square, \forall$ possible j,
$\operatorname{Proj}_{(m, k)}^{j}(V)$ is collinearly conn.
For each $(m, k) \in \square, \exists$ possible j_{1}, j_{2} s.t.
$\operatorname{Proj}_{(m, k)}^{j_{1}}(V)$ is collinearly conn.
$\operatorname{Proj}_{(m, k)}^{j_{2}}(V)$ is not collinearly conn.

(m,k,j)-projective spaces

collinearly and/or concurrently connected

Question 3

Under which conditions $\operatorname{Proj}_{(m, k)}^{j}(V)$ is a collinearly and/or concurrently connected space? $(G=A B A$ and/or $G=B A B)$

Collinearity property

$$
(1, n-1) \quad(n-1, n-1)
$$

Concurrency property
(1, $n-1$)
$(n-1, n-1)$

(m,k,j)-projective spaces

collinearly and/or concurrently connected

Question 3

Under which conditions $\operatorname{Proj}_{(m, k)}^{j}(V)$ is a collinearly and/or concurrently connected space? ($G=A B A$ and/or $G=B A B$)

(m,k,j)-projective spaces

collinearly and/or concurrently connected

$(m, k) \in$	Collinearity property	Concurrency property
X	for all $j:$ Yes	for all $j:$ Yes
Y	for all $j:$ Yes	exists $j_{2}^{\prime}:$ No
Z	exists $j_{2}:$ No	for all $j:$ Yes
Q	exists $j:$ No	exists $j^{\prime}:$ No

$$
(1, n-1) \quad(n-1, n-1)
$$

(m,k,j)-projective spaces

collinearly and/or concurrently connected

Question 4

Is there a $\operatorname{Proj}_{(m, k)}^{j}(V)$ with exactly one connectivity property? If yes, under which conditions? (e.g. $G=A B A$ but $G \neq B A B$)

(m,k,j)-projective spaces

collinearly and/or concurrently connected

Question 4

Is there a $\operatorname{Proj}_{(m, k)}^{j}(V)$ with exactly one connectivity property? If yes, under which conditions? (e.g. $G=A B A$ but $G \neq B A B$)

$\square \exists$ possible j s.t.,
$\operatorname{Proj}_{(m, k)}^{j}(V)$ is collinearly but not concurrently connected.

(m,k,j)-projective spaces

collinearly and/or concurrently connected

Question 4

Is there a $\operatorname{Proj}_{(m, k)}^{j}(V)$ with exactly one connectivity property? If yes, under which conditions? (e.g. $G=A B A$ but $G \neq B A B$)

$\square \exists$ possible j s.t., $\operatorname{Proj}_{(m, k)}^{j}(V)$ is collinearly but not concurrently connected.

■ \exists possible j^{\prime} s.t.
$\operatorname{Proj}_{(m, k)}^{j^{\prime}}(V)$ is concurrently but not collinearly connected

References

囯 S．H．Alavi and C．E．Praeger，On triple factorisations of finite groups，to appear in J．Group Theory．

䍰 S．H．Alavi，J．Bamberg and C．E．Praeger，Parbolic triple factorisations and their associated geometries，in preparation．
© N．Bourbaki，Lie groups and Lie algebras．Chapters 4－6， （Springer－Verlag，2002）．

雷 F．Buekenhout，editor．Handbook of incidence geometry． North－Holland，Amsterdam，1995．Buildings and foundations．
（in D．Gorenstein and I．N．Herstein，A class of solvable groups， Canad．J．Math． 11 （1959），311－320．

囦 D．G．Higman and J．E．McLaughlin，Geometric $A B A$－groups， Illinois J．Math． 5 （1961），382－397．

Thank You

Methodology

Criteria

Criteria

Let $A, B<G, \alpha:=A \in \Omega_{A}$, and $\beta:=B \in \Omega_{B}$.

- Geometric Criterion (Jan Saxl): G-action on Ω_{A} $G=A B A \Leftrightarrow$ the B-orbit α^{B} intersects nontrivially each G_{α}-orbit in Ω_{A}.
Application:
(1) [Giudici-James] $S_{n}=A B A, A$ and B conjugate.
(2) $\mathrm{GL}(V)=A B A, A$: parabolic, B : parabolic/stabiliser of $V=V_{1} \oplus V_{2}$.
- Restricted Movement Criterion: G-action on Ω_{B} $G=A B A \Leftrightarrow \Gamma:=\beta^{A}$ has restricted movement:
$\Gamma^{g} \cap \Gamma \neq \varnothing$, for all $g \in G$.
Application:
(1) $\mathrm{GL}(V)=B A B, A$: parabolic, B : stabiliser of $V=V_{1} \oplus V_{2}$.

