
Parabolic triple factorisations and their associated
geometries

S. Hassan Alavi

(joint work with Cheryl E. Praeger and John Bamberg)

The University of Western Australia

Workshop on Finite Groups and Their Automorphisms
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Triple factorisations

Definition

For a finite group G , a triple T = (G ,A,B) is called a triple
factorisation if G = ABA, where A, B ≤ G .

G = AB or BA: T is a degenerate triple factorisation.

G 6= AB: T is a nondegenerate triple factorisation.

A group with triple factorisation T = (G ,A,B) is sometimes called
an ABA-group.

Notation

TF:=triple factorisation
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Why?

Lie theory

BN-pairs: If G has a BN-pair ⇒ G = BNB (Bruhat
decomposition)
e.g., Chevalley groups and Twisted groups.

Abstract group theory

For G = ABA, study group theoretic properties of G from group
theoretic properties of A and B.
e.g. Gorenstein-Herstein (1959): A and B with gcd(|A|, |B|) = 1
⇒ G is solvable.

Geometry

Higman-McLaughlin (1961): every G -flag-transitive rank 2
geometry gives G = ABA ⇔

Collinearity property: each pair of points lies on at least on line.
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Rank 2 geometries
Notation and Definitions

Suppose that X = P ∪ L (disjoint union) with

P: point set;

L: line set;

Incidence relation ∗ on X : symmetric and reflexive

x and y are incident ⇔ x ∗ y , for x , y ∈ X .

flag: an incident pair (p, `) of π.

Rank 2 geometry: A triple π := (P,L, ∗) where

1 two distinct elements of the same type are not incident;

2 each point lies on a line.

The dual of π = (P,L, ∗): π∨ = (L,P, ∗).
Here, every rank 2 geometry satisfies

|P| and |L| are finite and of size at least 2;

each point is incident with at least two lines;

each line is incident with at least two points.
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Rank 2 geometries
Coset geometries

Let G be a group with A and B subgroups. Set

P := {Ax | x ∈ G};
L := {Bx | x ∈ G};
∗ is nonempty intersection:

Ax ∗ By ⇔ Ax ∩ By 6= ∅
Then (P,L, ∗) is a rank 2 geometry called coset geometry and
denoted by Cos(G; A,B).

Example

G = 〈x , y〉 ∼= Z4 × Z2,
A = 〈x2〉 and B = 〈y〉, where
x := (1, 2, 3, 8)(4, 5, 6, 7) and
y := (1, 5)(2, 6)(3, 7)(4, 8);
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Rank 2 geometries
Flag-transitive geometries

Let π := (P,L, ∗) be rank 2 geometry, and set X := P ∪ L.

An automorphism g of π: a bijection g : X → X taking
points to points, lines to lines and preserving incidence:

p ∗ ` ⇔ (p)g ∗ (`)g .

Aut(π) := {g | g is an automorphism of π}.
G ≤ Aut(π) acts on points and lines, and so on flags:

(p, `)g = ((p)g , (`)g), (p ∈ P and ` ∈ L).

π is G -flag-transitive: G acts transitively on the set of flags.
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Rank 2 geometries
Flag-transitive geometries

Let π := (P,L, ∗) be rank 2 geometry, and set X := P ∪ L.

An automorphism g of π: a bijection g : X → X taking
points to points, lines to lines and preserving incidence:

p ∗ ` ⇔ (p)g ∗ (`)g .

Aut(π) := {g | g is an automorphism of π}.
G ≤ Aut(π) acts on points and lines, and so on flags:

(p, `)g = ((p)g , (`)g), (p ∈ P and ` ∈ L).

π is G -flag-transitive: G acts transitively on the set of flags.

Proposition

Let π be rank 2 geometry and G ≤ Aut(π). Then π is G -flag
transitive ⇔ π ∼= Cos(G ; A,B) for some subgroups A and B.

For a flag (p, `) of π, A := Gp and B := G`

π ∼= Cos(G ; Gp,G`)



Triple factorisations and rank 2 geometries

Remark

Each triple factorisation G = ABA gives rise to a G -flag transitive
rank 2 geometry, i.e., Cos(G ; A,B).

Question 1

Does a G -flag-transitive rank 2 geometry give rise to a TF for G ?

No

: G 6= ABA where G = 〈x , y〉 ∼= Z4×Z2,
A = 〈x2〉 and B = 〈y〉,
x := (1, 2, 3, 8)(4, 5, 6, 7),
y := (1, 5)(2, 6)(3, 7)(4, 8).
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Question 2

Under which conditions a G -flag-transitive rank 2 geometry gives
rise to a TF for G ?
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Collinearly and concurrently connected spaces
Collinearly connected π: each pair of points lies on at least one
line.
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Example

All 2− (v , k , λ) designs are collinearly connected as λ ≥ 1;

Symmetric designs are both collinearly and concurrently
connected.

Projective spaces PG(n − 1, q) for n ≥ 4 are collinearly but
not concurrently connected: V := 〈e1, e2, e3, e4, . . . , en〉, then
two lines 〈e1, e2〉 and 〈e3, e4〉 do not meet.
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Collinearly and concurrently connected spaces
Collinearly connected π: each pair of points lies on at least one
line.
Concurrently connected π: each pair of lines meets in at least
one point.

Example

The Cos(G ; A,B) below is neither collinearly, nor concurrently
connected:

G = 〈x , y〉 ∼= Z4 × Z2,
A = 〈x2〉 and B = 〈y〉,
x := (1, 2, 3, 8)(4, 5, 6, 7);
y := (1, 5)(2, 6)(3, 7)(4, 8);
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line.
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Collinearly and concurrently connected spaces
Collinearly connected π: each pair of points lies on at least one
line.
Concurrently connected π: each pair of lines meets in at least
one point.

Question 2

Under which conditions a G -flag-transitive rank 2 geometry gives
rise to a TF of G ?

Higman-McLaughlin Criterion (1961)

1 Cos(G ; A,B) is collinearly connected if and only if G = ABA;

2 Cos(G ; A,B) is concurrently connected if and only if
G = BAB.



Linear spaces

Higman-McLaughlin (1961)

The following are equivalent:

G is a Geometric ABA-group
(G = ABA, A 6⊆ B, B 6⊆ A, AB ∩ BA = A ∪ B);

Cos(G ; A,B) is a (G -flag transitive) linear space.

If G is a Geometric ABA-group, then G is primitive on right
cosets of A: A is maximal.

Question

For a given TF T = (G ,A,B), is there any reduction pathway to
the case where A is maximal? YES (AP-2009)



Parabolic triple factorisations of GL(V )

Let G := GL(V ). Consider the Grassmannian set Grm(V ) of all
m-subspaces of V .

For U ∈ Grm(V ), the stabiliser subgroup H := GU of G is a
(maximal) parabolic subgroup of G .

A triple factorisation (G ,A,B) with A and B parabolic
subgroups is called a parabolic triple factorisation.

Theorem

Let G = GL(V ), A := GU and B := GW with U ∈ Grm(V ) and
W ∈ Grk(V ), and let j := dim(U ∩W ). Then

G = ABA⇔ j ≤ k

2
+ max

{
0,m − n

2

}
.
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(m, k , j)-projective spaces
Notation and Definitions

Let V be a v.s. over a field F, and let 1 ≤ m, k < n be positive
integers. Let j be positive integer satisfying

max{0,m + k − n} ≤ j ≤ min{m, k}.

P := Grm(V );

L := Grk(V ) (if m = k, take L a copy of P)

Incidence relation ∗j : on X := P ∪ L by

U ∗j W ⇔ dim(U ∩W ) = j .

(P,L, ∗) is a rank 2 geometry called (m, k , j)-projective
space of V and denoted by Proj j(m,k)(V ) or Proj j(m,k)(n,F).

Link to projective geometry

If j0 = min{m, k} ⇒ ∗j0 is the ‘symmetrised inclusion’.
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Link to parabolic triple factorisations

G := GL(V ) acts transitively on flags of Proj j(m,k)(V ) by

(U,W )g := ((U)g , (W )g).

For a flag (U,W ),

Proj j(m,k)(V ) ∼= Cos(G ; GU ,GW ),

where A := GU and B := GW are maximal parabolic.

Proj j(m,k)(V ) is collinearly (concurrently) connected ⇔
G = ABA (G = BAB) where A := GU and B := GW are
parabolic.

Theorem (Alavi-Bamberg-Praeger)

Proj j(m,k)(V ) is collinearly connected ⇔ j ≤ k
2 + max{0,m − n

2}.
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(m,k,j)-projective spaces
collinearity property

Collinearity property

For each (m, k), there exists possible j such that Proj j(m,k)(V )
is collinearly connected.

There exist parabolic subgroups A and B such that G = ABA

For each (m, k) ∈ �, ∀ possible j ,
Proj j(m,k)(V ) is collinearly conn.

For each (m, k) ∈ �, ∃ possible j1, j2
s.t.
Proj j1(m,k)(V ) is collinearly conn.

Proj j2(m,k)(V ) is not collinearly conn.
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There exist parabolic subgroups A and B such that G = ABA
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(m,k,j)-projective spaces
collinearly and/or concurrently connected

Question 3

Under which conditions Proj j(m,k)(V ) is a collinearly and/or

concurrently connected space? (G = ABA and/or G = BAB)
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(m,k,j)-projective spaces
collinearly and/or concurrently connected

(m, k) ∈ Collinearity property Concurrency property
X for all j : Yes for all j : Yes
Y for all j : Yes exists j ′2: No
Z exists j2: No for all j : Yes
Q exists j: No exists j′: No
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(m,k,j)-projective spaces
collinearly and/or concurrently connected

Question 4

Is there a Proj j(m,k)(V ) with exactly one connectivity property? If

yes, under which conditions? (e.g. G = ABA but G 6= BAB)

� ∃ possible j s.t.,
Proj j(m,k)(V ) is collinearly but not
concurrently connected.

� ∃ possible j ′ s.t.

Proj j
′

(m,k)(V ) is concurrently but not
collinearly connected
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Thank You



Methodology
Criteria

Criteria

Let A,B < G , α := A ∈ ΩA, and β := B ∈ ΩB .

Geometric Criterion (Jan Saxl): G -action on ΩA

G = ABA ⇔ the B-orbit αB intersects nontrivially each
Gα-orbit in ΩA.
Application:
(1) [Giudici-James] Sn = ABA, A and B conjugate.
(2) GL(V ) = ABA, A: parabolic, B: parabolic/stabiliser of
V = V1 ⊕ V2.

Restricted Movement Criterion: G -action on ΩB

G = ABA ⇔ Γ := βA has restricted movement:
Γg ∩ Γ 6= ∅, for all g ∈ G .
Application:
(1) GL(V ) = BAB, A: parabolic, B: stabiliser of
V = V1 ⊕ V2.
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