Parabolic triple factorisations and their associated geometries

S. Hassan Alavi

(joint work with Cheryl E. Praeger and John Bamberg)

The University of Western Australia

Workshop on Finite Groups and Their Automorphisms Boğazicci University

June 7-11, 2011, İstanbul, Turkey

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Definition

For a finite group G, a triple $\mathcal{T} = (G, A, B)$ is called a *triple factorisation* if G = ABA, where A, $B \leq G$.

- G = AB or BA: T is a degenerate triple factorisation.
- $G \neq AB$: T is a nondegenerate triple factorisation.

A group with triple factorisation T = (G, A, B) is sometimes called an *ABA*-group.

Notation

TF:=triple factorisation

Definition

For a finite group G, a triple $\mathcal{T} = (G, A, B)$ is called a *triple factorisation* if G = ABA, where A, $B \leq G$.

• G = AB or BA: T is a degenerate triple factorisation.

• $G \neq AB$: T is a nondegenerate triple factorisation.

A group with triple factorisation T = (G, A, B) is sometimes called an *ABA*-group.

Notation

TF:=triple factorisation

Definition

For a finite group G, a triple $\mathcal{T} = (G, A, B)$ is called a *triple factorisation* if G = ABA, where A, $B \leq G$.

- G = AB or BA: T is a degenerate triple factorisation.
- $G \neq AB$: T is a nondegenerate triple factorisation.

A group with triple factorisation T = (G, A, B) is sometimes called an *ABA*-group.

Notation

TF:=triple factorisation

Definition

For a finite group G, a triple $\mathcal{T} = (G, A, B)$ is called a *triple factorisation* if G = ABA, where A, $B \leq G$.

- G = AB or BA: T is a degenerate triple factorisation.
- $G \neq AB$: T is a nondegenerate triple factorisation.

A group with triple factorisation $\mathcal{T} = (G, A, B)$ is sometimes called an *ABA*-group.

Notation

TF:=triple factorisation

Definition

For a finite group G, a triple $\mathcal{T} = (G, A, B)$ is called a *triple factorisation* if G = ABA, where A, $B \leq G$.

- G = AB or BA: T is a degenerate triple factorisation.
- $G \neq AB$: T is a nondegenerate triple factorisation.

A group with triple factorisation $\mathcal{T} = (G, A, B)$ is sometimes called an *ABA*-group.

Notation

Why?

Lie theory

BN-pairs: If G has a BN-pair \Rightarrow G = BNB (Bruhat decomposition) e.g., Chevalley groups and Twisted groups.

Abstract group theory

For G = ABA, study group theoretic properties of G from group theoretic properties of A and B. e.g. Gorenstein-Herstein (1959): A and B with gcd(|A|, |B|) = 1 $\Rightarrow G$ is solvable.

Geometry

Higman-McLaughlin (1961): every G-flag-transitive rank 2 geometry gives $G = ABA \Leftrightarrow$

Collinearity property: each pair of points lies on at least on line.

イロン イロン イヨン イヨン 三日

Why?

Lie theory

BN-pairs: If G has a BN-pair \Rightarrow G = BNB (Bruhat decomposition) e.g., Chevalley groups and Twisted groups.

Abstract group theory

For G = ABA, study group theoretic properties of G from group theoretic properties of A and B. e.g. Gorenstein-Herstein (1959): A and B with gcd(|A|, |B|) = 1 $\Rightarrow G$ is solvable.

Geometry

Higman-McLaughlin (1961): every G-flag-transitive rank 2 geometry gives $G = ABA \Leftrightarrow$

Collinearity property: each pair of points lies on at least on line.

・ロン ・四 と ・ ヨン ・ ヨン … ヨ

Why?

Lie theory

BN-pairs: If G has a BN-pair \Rightarrow G = BNB (Bruhat decomposition) e.g., Chevalley groups and Twisted groups.

Abstract group theory

For G = ABA, study group theoretic properties of G from group theoretic properties of A and B. e.g. Gorenstein-Herstein (1959): A and B with gcd(|A|, |B|) = 1 $\Rightarrow G$ is solvable.

Geometry

Higman-McLaughlin (1961): every G-flag-transitive rank 2 geometry gives $G = ABA \Leftrightarrow$

Collinearity property: each pair of points lies on at least on line.

Notation and Definitions

Suppose that $X = \mathbb{P} \cup \mathbb{L}$ (disjoint union) with

- P: point set;
- L: line set;
- Incidence relation * on X: symmetric and reflexive

x and y are incident $\Leftrightarrow x * y$, for $x, y \in X$.

- flag: an incident pair (p, ℓ) of π .
- **Rank** 2 geometry: A triple $\pi := (\mathbb{P}, \mathbb{L}, *)$ where
 - 1 two distinct elements of the same type are not incident;
 - 2 each point lies on a line.

The dual of $\pi = (\mathbb{P}, \mathbb{L}, *)$: $\pi^{\vee} = (\mathbb{L}, \mathbb{P}, *)$.

- $|\mathbb{P}|$ and $|\mathbb{L}|$ are finite and of size at least 2;
- each point is incident with at least two lines;
- each line is incident with at least two points.

Notation and Definitions

Suppose that $X = \mathbb{P} \cup \mathbb{L}$ (disjoint union) with

- P: point set;
- L: line set;
- Incidence relation * on X: symmetric and reflexive

x and y are incident $\Leftrightarrow x * y$, for $x, y \in X$.

- flag: an incident pair (p, ℓ) of π .
- **Rank** 2 geometry: A triple $\pi := (\mathbb{P}, \mathbb{L}, *)$ where
 - two distinct elements of the same type are not incident;
 - 2 each point lies on a line.

The dual of $\pi = (\mathbb{P}, \mathbb{L}, *)$: $\pi^{\vee} = (\mathbb{L}, \mathbb{P}, *)$

Here, every rank 2 geometry satisfies

- $|\mathbb{P}|$ and $|\mathbb{L}|$ are finite and of size at least 2;
- each point is incident with at least two lines;
- each line is incident with at least two points.

Notation and Definitions

Suppose that $X = \mathbb{P} \cup \mathbb{L}$ (disjoint union) with

- P: point set;
- L: line set;
- Incidence relation * on X: symmetric and reflexive

x and y are incident $\Leftrightarrow x * y$, for $x, y \in X$.

- flag: an incident pair (p, ℓ) of π .
- **Rank** 2 geometry: A triple $\pi := (\mathbb{P}, \mathbb{L}, *)$ where
 - two distinct elements of the same type are not incident;
 - 2 each point lies on a line.

The dual of $\pi = (\mathbb{P}, \mathbb{L}, *)$: $\pi^{\vee} = (\mathbb{L}, \mathbb{P}, *)$.

Here, every rank 2 geometry satisfies

- $|\mathbb{P}|$ and $|\mathbb{L}|$ are finite and of size at least 2;
- each point is incident with at least two lines;
- each line is incident with at least two points.

Notation and Definitions

Suppose that $X = \mathbb{P} \cup \mathbb{L}$ (disjoint union) with

- P: point set;
- L: line set;
- Incidence relation * on X: symmetric and reflexive

x and y are incident $\Leftrightarrow x * y$, for $x, y \in X$.

- flag: an incident pair (p, ℓ) of π .
- **Rank** 2 geometry: A triple $\pi := (\mathbb{P}, \mathbb{L}, *)$ where
 - two distinct elements of the same type are not incident;
 - 2 each point lies on a line.

The dual of $\pi = (\mathbb{P}, \mathbb{L}, *)$: $\pi^{\vee} = (\mathbb{L}, \mathbb{P}, *)$. Here, every rank 2 geometry satisfies

- $|\mathbb{P}|$ and $|\mathbb{L}|$ are finite and of size at least 2;
- each point is incident with at least two lines;
- each line is incident with at least two points.

Coset geometries

Let G be a group with A and B subgroups. Set

- $\mathbb{P} := \{Ax \mid x \in G\};$
- $\mathbb{L} := \{Bx \mid x \in G\};$
- * is nonempty intersection:

$$Ax * By \Leftrightarrow Ax \cap By \neq \emptyset$$

Then $(\mathbb{P}, \mathbb{L}, *)$ is a rank 2 geometry called **coset geometry** and denoted by Cos(G; A, B).

Example

 $G = \langle x, y \rangle \cong Z_4 \times Z_2,$ $A = \langle x^2 \rangle \text{ and } B = \langle y \rangle, \text{ where}$ x := (1, 2, 3, 8)(4, 5, 6, 7) andy := (1, 5)(2, 6)(3, 7)(4, 8);

SOF A SEA SEA

Coset geometries

Let G be a group with A and B subgroups. Set

- $\mathbb{P} := \{Ax \mid x \in G\};$
- $\mathbb{L} := \{Bx \mid x \in G\};$
- * is nonempty intersection:

$$Ax * By \Leftrightarrow Ax \cap By \neq \emptyset$$

Then $(\mathbb{P}, \mathbb{L}, *)$ is a rank 2 geometry called **coset geometry** and denoted by Cos(G; A, B).

$$G = \langle x, y \rangle \cong Z_4 \times Z_2,$$

$$A = \langle x^2 \rangle \text{ and } B = \langle y \rangle, \text{ where }$$

$$x := (1, 2, 3, 8)(4, 5, 6, 7) \text{ and }$$

$$y := (1, 5)(2, 6)(3, 7)(4, 8);$$

Flag-transitive geometries Let $\pi := (\mathbb{P}, \mathbb{L}, *)$ be rank 2 geometry, and set $X := \mathbb{P} \cup \mathbb{L}$.

> An automorphism g of π: a bijection g : X → X taking points to points, lines to lines and preserving incidence:

$$p * \ell \quad \Leftrightarrow \quad (p)g * (\ell)g.$$

- $\operatorname{Aut}(\pi) := \{g \mid g \text{ is an automorphism of } \pi\}.$
- $G \leq \operatorname{Aut}(\pi)$ acts on points and lines, and so on flags: $(p, \ell)^g = ((p)g, (\ell)g), \ (p \in \mathbb{P} \text{ and } \ell \in \mathbb{L}).$
- π is *G*-flag-transitive: *G* acts transitively on the set of *flags*.

Flag-transitive geometries Let $\pi := (\mathbb{P}, \mathbb{L}, *)$ be rank 2 geometry, and set $X := \mathbb{P} \cup \mathbb{L}$.

> An automorphism g of π: a bijection g : X → X taking points to points, lines to lines and preserving incidence:

$$p * \ell \quad \Leftrightarrow \quad (p)g * (\ell)g.$$

- $\operatorname{Aut}(\pi) := \{g \mid g \text{ is an automorphism of } \pi\}.$
- $G \leq \operatorname{Aut}(\pi)$ acts on points and lines, and so on flags: $(p, \ell)^g = ((p)g, (\ell)g), \ (p \in \mathbb{P} \text{ and } \ell \in \mathbb{L}).$

• π is *G*-flag-transitive: *G* acts transitively on the set of *flags*.

Cos(G; A, B) is G- flag-transitive via

$$(Ax, By)^g := (Axg, Byg),$$

for all $g \in G$, $Ax \in \mathbb{P}$, $By \in \mathbb{L}$.

Flag-transitive geometries Let $\pi := (\mathbb{P}, \mathbb{L}, *)$ be rank 2 geometry, and set $X := \mathbb{P} \cup \mathbb{L}$.

> An automorphism g of π: a bijection g : X → X taking points to points, lines to lines and preserving incidence:

$$p * \ell \quad \Leftrightarrow \quad (p)g * (\ell)g.$$

- $\operatorname{Aut}(\pi) := \{g \mid g \text{ is an automorphism of } \pi\}.$
- $G \leq \operatorname{Aut}(\pi)$ acts on points and lines, and so on flags: $(p, \ell)^g = ((p)g, (\ell)g), \ (p \in \mathbb{P} \text{ and } \ell \in \mathbb{L}).$
- π is *G*-flag-transitive: *G* acts transitively on the set of *flags*.

Proposition

Let π be rank 2 geometry and $G \leq \operatorname{Aut}(\pi)$. Then π is G-flag transitive $\Leftrightarrow \pi \cong \operatorname{Cos}(G; A, B)$ for some subgroups A and B. For a flag (p, ℓ) of π , $A := G_p$ and $B := G_\ell$

 $\pi \cong Cos(G; \mathbf{G}_{p}, \mathbf{G}_{\ell})$

Remark

Each triple factorisation G = ABA gives rise to a G-flag transitive rank 2 geometry, i.e., Cos(G; A, B).

< ロ > < 回 > < 回 > < 回 > < 回 > <

3

Remark

Each triple factorisation G = ABA gives rise to a G-flag transitive rank 2 geometry, i.e., Cos(G; A, B).

Question 1

Does a G-flag-transitive rank 2 geometry give rise to a TF for G?

・ロト ・回ト ・ヨト ・ヨト

Remark

Each triple factorisation G = ABA gives rise to a G-flag transitive rank 2 geometry, i.e., Cos(G; A, B).

Question 1

Does a G-flag-transitive rank 2 geometry give rise to a TF for G?

No:
$$G \neq ABA$$
 where $G = \langle x, y \rangle \cong Z_4 \times Z_2$,
 $A = \langle x^2 \rangle$ and $B = \langle y \rangle$,
 $x := (1, 2, 3, 8)(4, 5, 6, 7)$,
 $y := (1, 5)(2, 6)(3, 7)(4, 8)$.

・ロ・ ・ 日・ ・ 日・ ・ 日・

Remark

Each triple factorisation G = ABA gives rise to a G-flag transitive rank 2 geometry, i.e., Cos(G; A, B).

Question 1

Does a G-flag-transitive rank 2 geometry give rise to a TF for G?

No:
$$G \neq ABA$$
 where $G = \langle x, y \rangle \cong Z_4 \times Z_2$,
 $A = \langle x^2 \rangle$ and $B = \langle y \rangle$,
 $x := (1, 2, 3, 8)(4, 5, 6, 7)$,
 $y := (1, 5)(2, 6)(3, 7)(4, 8)$.

Question 2

Under which conditions a G-flag-transitive rank 2 geometry gives rise to a TF for G?

(a)

э

A collinearly connected space

Concurrently connected π : each pair of lines meets in at least one point.

A collinearly connected space

A concurrently connected space

 π is collinearly connected $\Leftrightarrow \pi^{\vee}$ is concurrently connected.

Concurrently connected π : each pair of lines meets in at least one point.

A collinearly connected space

A concurrently connected space

- All $2 (v, k, \lambda)$ designs are collinearly connected as $\lambda \ge 1$;
- Symmetric designs are both collinearly and concurrently connected.
- Projective spaces PG(n − 1, q) for n ≥ 4 are collinearly but not concurrently connected: V := ⟨e₁, e₂, e₃, e₄,..., e_n⟩, then two lines ⟨e₁, e₂⟩ and ⟨e₃, e₄⟩ do not meet.

Concurrently connected π : each pair of lines meets in at least one point.

A collinearly connected space

A concurrently connected space

- All $2 (v, k, \lambda)$ designs are collinearly connected as $\lambda \ge 1$;
- Symmetric designs are both collinearly and concurrently connected.
- Projective spaces PG(n-1, q) for $n \ge 4$ are collinearly but not concurrently connected: $V := \langle e_1, e_2, e_3, e_4, \dots, e_n \rangle$, then two lines $\langle e_1, e_2 \rangle$ and $\langle e_3, e_4 \rangle$ do not meet.

Concurrently connected π : each pair of lines meets in at least one point.

A collinearly connected space

A concurrently connected space

- All $2 (v, k, \lambda)$ designs are collinearly connected as $\lambda \ge 1$;
- Symmetric designs are both collinearly and concurrently connected.
- Projective spaces PG(n − 1, q) for n ≥ 4 are collinearly but not concurrently connected: V := ⟨e₁, e₂, e₃, e₄,..., e_n⟩, then two lines ⟨e₁, e₂⟩ and ⟨e₃, e₄⟩ do not meet.

Concurrently connected π : each pair of lines meets in at least one point.

A collinearly connected space

A concurrently connected space

Example

The Cos(G; A, B) below is neither collinearly, nor concurrently connected:

$$G = \langle x, y \rangle \cong Z_4 \times Z_2, A = \langle x^2 \rangle \text{ and } B = \langle y \rangle, x := (1, 2, 3, 8)(4, 5, 6, 7); y := (1, 5)(2, 6)(3, 7)(4, 8);$$

Concurrently connected π : each pair of lines meets in at least one point.

A collinearly connected space

A concurrently connected space

Question 2

Under which conditions a G-flag-transitive rank 2 geometry gives rise to a TF of G?

Concurrently connected π : each pair of lines meets in at least one point.

A collinearly connected space

A concurrently connected space

Question 2

Under which conditions a *G*-flag-transitive rank 2 geometry gives rise to a TF of *G*?

Higman-McLaughlin Criterion (1961)

- Cos(G; A, B) is collinearly connected if and only if G = ABA;
- Cos(G; A, B) is concurrently connected if and only if G = BAB.

Linear spaces

Higman-McLaughlin (1961)

The following are equivalent:

- G is a Geometric ABA-group $(G = ABA, A \not\subseteq B, B \not\subseteq A, AB \cap BA = A \cup B);$
- Cos(G; A, B) is a (G-flag transitive) linear space.

If G is a **Geometric** ABA-group, then G is primitive on right cosets of A: A is maximal.

Question

For a given TF $\mathcal{T} = (G, A, B)$, is there any reduction pathway to the case where A is maximal? **YES** (AP-2009)

Parabolic triple factorisations of GL(V)

Let G := GL(V). Consider the **Grassmannian** set $Gr_m(V)$ of all *m*-subspaces of *V*.

- For U ∈ Gr_m(V), the stabiliser subgroup H := G_U of G is a (maximal) parabolic subgroup of G.
- A triple factorisation (*G*, *A*, *B*) with *A* and *B* parabolic subgroups is called a **parabolic triple factorisation**.

Theorem

Let G = GL(V), $A := G_U$ and $B := G_W$ with $U \in Gr_m(V)$ and $W \in Gr_k(V)$, and let $j := \dim(U \cap W)$. Then

$$G = ABA \Leftrightarrow j \leq \frac{k}{2} + \max\left\{0, m - \frac{n}{2}\right\}.$$

Parabolic triple factorisations of GL(V)

Let G := GL(V). Consider the **Grassmannian** set $Gr_m(V)$ of all *m*-subspaces of *V*.

- For U ∈ Gr_m(V), the stabiliser subgroup H := G_U of G is a (maximal) parabolic subgroup of G.
- A triple factorisation (*G*, *A*, *B*) with *A* and *B* parabolic subgroups is called a **parabolic triple factorisation**.

Theorem

Let G = GL(V), $A := G_U$ and $B := G_W$ with $U \in Gr_m(V)$ and $W \in Gr_k(V)$, and let $j := \dim(U \cap W)$. Then

$$G = ABA \Leftrightarrow j \leq \frac{k}{2} + \max\left\{0, m - \frac{n}{2}\right\}.$$

Parabolic triple factorisations of GL(V)

Let G := GL(V). Consider the **Grassmannian** set $Gr_m(V)$ of all *m*-subspaces of *V*.

- For U ∈ Gr_m(V), the stabiliser subgroup H := G_U of G is a (maximal) parabolic subgroup of G.
- A triple factorisation (G, A, B) with A and B parabolic subgroups is called a **parabolic triple factorisation**.

Theorem

Let G = GL(V), $A := G_U$ and $B := G_W$ with $U \in Gr_m(V)$ and $W \in Gr_k(V)$, and let $j := \dim(U \cap W)$. Then

$$G = ABA \Leftrightarrow j \leq \frac{k}{2} + \max\left\{0, m - \frac{n}{2}\right\}.$$

Let V be a v.s. over a field \mathbb{F} , and let $1 \le m, k < n$ be positive integers. Let j be positive integer satisfying

 $\max\{0, m+k-n\} \le j \le \min\{m, k\}.$

(a)

Let V be a v.s. over a field \mathbb{F} , and let $1 \le m, k < n$ be positive integers. Let j be positive integer satisfying

 $\max\{0, m+k-n\} \le j \le \min\{m, k\}.$

- $\mathbb{P} := \operatorname{Gr}_m(V);$
- $\mathbb{L} := \operatorname{Gr}_k(V)$ (if m = k, take \mathbb{L} a copy of \mathbb{P})
- Incidence relation $*^j$: on $X := \mathbb{P} \cup \mathbb{L}$ by

 $U *^{j} W \Leftrightarrow \dim(U \cap W) = j.$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 のへで

 (P, L, *) is a rank 2 geometry called (m, k, j)-projective space of V and denoted by Proj^j_(m,k)(V) or Proj^j_(m,k)(n, F).

Let V be a v.s. over a field \mathbb{F} , and let $1 \le m, k < n$ be positive integers. Let j be positive integer satisfying

 $\max\{0, m+k-n\} \le j \le \min\{m, k\}.$

- $\mathbb{P} := \operatorname{Gr}_m(V);$
- $\mathbb{L} := \operatorname{Gr}_k(V)$ (if m = k, take \mathbb{L} a copy of \mathbb{P})
- Incidence relation $*^j$: on $X := \mathbb{P} \cup \mathbb{L}$ by

 $U *^{j} W \Leftrightarrow \dim(U \cap W) = j.$

 (ℙ, L, *) is a rank 2 geometry called (m, k, j)-projective space of V and denoted by Proj^j_(m,k)(V) or Proj^j_(m,k)(n, 𝔅).

Let V be a v.s. over a field \mathbb{F} , and let $1 \le m, k < n$ be positive integers. Let j be positive integer satisfying

$$\max\{0, m+k-n\} \le j \le \min\{m, k\}.$$

- $\mathbb{P} := \operatorname{Gr}_m(V);$
- $\mathbb{L} := \operatorname{Gr}_k(V)$ (if m = k, take \mathbb{L} a copy of \mathbb{P})
- Incidence relation $*^j$: on $X := \mathbb{P} \cup \mathbb{L}$ by

 $U *^{j} W \Leftrightarrow \dim(U \cap W) = j.$

 (ℙ, L, *) is a rank 2 geometry called (m, k, j)-projective space of V and denoted by Proj^j_(m,k)(V) or Proj^j_(m,k)(n, 𝔽).

Link to projective geometry

If $j_0 = \min\{m, k\} \Rightarrow *^{j_0}$ is the 'symmetrised inclusion'.

• $G := \operatorname{GL}(V)$ acts transitively on flags of $\operatorname{Proj}_{(m,k)}^j(V)$ by $(U, W)^g := ((U)g, (W)g).$

• For a flag (U, W),

$$\operatorname{Proj}_{(m,k)}^{j}(V) \cong \operatorname{Cos}(G; G_{U}, G_{W}),$$

where $A := G_U$ and $B := G_W$ are maximal parabolic.

• $\operatorname{Proj}_{(m,k)}^{j}(V)$ is collinearly (concurrently) connected \Leftrightarrow $G = ABA \ (G = BAB)$ where $A := G_U$ and $B := G_W$ are parabolic.

Theorem (Alavi-Bamberg-Praeger)

 $Proj_{(m,k)}^{j}(V)$ is collinearly connected $\Leftrightarrow j \leq \frac{k}{2} + \max\{0, m - \frac{n}{2}\}.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - の�?

• $G := \operatorname{GL}(V)$ acts transitively on flags of $\operatorname{Proj}_{(m,k)}^j(V)$ by $(U, W)^g := ((U)g, (W)g).$

• For a flag (U, W),

$$\operatorname{Proj}_{(m,k)}^{j}(V) \cong \operatorname{Cos}(G; \operatorname{G}_{U}, \operatorname{G}_{W}),$$

where $A := G_U$ and $B := G_W$ are maximal parabolic.

• $\operatorname{Proj}_{(m,k)}^{j}(V)$ is collinearly (concurrently) connected \Leftrightarrow $G = ABA \ (G = BAB)$ where $A := G_U$ and $B := G_W$ are parabolic.

Theorem (Alavi-Bamberg-Praeger)

 $Proj_{(m,k)}^{j}(V)$ is collinearly connected $\Leftrightarrow j \leq \frac{k}{2} + \max\{0, m - \frac{n}{2}\}.$

・ロ> < 回> < 回> < 回> < 回> < 回

• $G := \operatorname{GL}(V)$ acts transitively on flags of $\operatorname{Proj}_{(m,k)}^j(V)$ by $(U, W)^g := ((U)g, (W)g).$

• For a flag (U, W),

$$\operatorname{Proj}_{(m,k)}^{j}(V) \cong \operatorname{Cos}(G; \operatorname{G}_{U}, \operatorname{G}_{W}),$$

where $A := G_U$ and $B := G_W$ are maximal parabolic.

• $\operatorname{Proj}_{(m,k)}^{j}(V)$ is collinearly (concurrently) connected \Leftrightarrow $G = ABA \ (G = BAB)$ where $A := G_U$ and $B := G_W$ are parabolic.

Theorem (Alavi-Bamberg-Praeger)

 $Proj_{(m,k)}^{j}(V)$ is collinearly connected $\Leftrightarrow j \leq \frac{k}{2} + \max\{0, m - \frac{n}{2}\}.$

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ()

 G := GL(V) acts transitively on flags of Proj^j_(m,k)(V) by (U, W)^g := ((U)g, (W)g).

• For a flag (U, W),

$$\operatorname{Proj}_{(m,k)}^{j}(V) \cong \operatorname{Cos}(G; \operatorname{G}_{U}, \operatorname{G}_{W}),$$

where $A := G_U$ and $B := G_W$ are maximal parabolic.

• $\operatorname{Proj}_{(m,k)}^{j}(V)$ is collinearly (concurrently) connected \Leftrightarrow $G = ABA \ (G = BAB)$ where $A := G_U$ and $B := G_W$ are parabolic.

Theorem (Alavi-Bamberg-Praeger)

 $Proj_{(m,k)}^{j}(V)$ is collinearly connected $\Leftrightarrow j \leq \frac{k}{2} + \max\{0, m - \frac{n}{2}\}.$

◆□ → ◆□ → ◆三 → ◆三 → ○ ◆○ ◆

(m,k,j)-projective spaces collinearity property

Collinearity property

- For each (m, k), there exists possible j such that $\operatorname{Proj}_{(m,k)}^{j}(V)$ is collinearly connected.
- There exist parabolic subgroups A and B such that G = ABA

(m,k,j)-projective spaces collinearity property

Collinearity property

- For each (m, k), there exists possible j such that Proj^j_(m,k)(V) is collinearly connected.
- There exist parabolic subgroups A and B such that G = ABA

< 口 > < 回 > < 回 > < 回 > < 回 > <

(m,k,j)-projective spaces collinearity property

Collinearity property

- For each (m, k), there exists possible j such that $\operatorname{Proj}_{(m,k)}^{j}(V)$ is collinearly connected.
- There exist parabolic subgroups A and B such that G = ABA

$$(1, n-1)$$
 $(n-1, n-1)$

For each $(m, k) \in \blacksquare$, \forall possible j, Proj^{*j*}_(m,k)(V) is collinearly conn.

For each $(m, k) \in \blacksquare$, \exists possible j_1, j_2 s.t. Proj $_{(m,k)}^{j_1}(V)$ is collinearly conn. Proj $_{(m,k)}^{j_2}(V)$ is not collinearly conn.

・ロン ・日 ・ ・ 日 ・ ・ 日 ・

Question 3

Under which conditions $\operatorname{Proj}_{(m,k)}^{j}(V)$ is a collinearly and/or concurrently connected space? (G = ABA and/or G = BAB)

Question 3

Under which conditions $\operatorname{Proj}_{(m,k)}^{j}(V)$ is a collinearly and/or concurrently connected space? (G = ABA and/or G = BAB)

(m,k,j)-projective spaces

collinearly and/or concurrently connected

$(m,k) \in$	Collinearity property	Concurrency property
X	for all <i>j</i> : Yes	for all <i>j</i> : Yes
Y	for all <i>j</i> : Yes	exists j'_2 : No
Z	exists <i>j</i> ₂ : No	for all <i>j</i> : Yes
Q	exists j : No	exists j ′: No

Question 4

Is there a $\operatorname{Proj}_{(m,k)}^{j}(V)$ with **exactly one** connectivity property? If yes, under which conditions? (e.g. G = ABA but $G \neq BAB$)

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

Question 4

Is there a $\operatorname{Proj}_{(m,k)}^{j}(V)$ with **exactly one** connectivity property? If yes, under which conditions? (e.g. G = ABA but $G \neq BAB$)

■ \exists possible *j* s.t., Proj^{*j*}_(*m*,*k*)(*V*) is collinearly but not concurrently connected.

★ @ > ★ @ > ★ @ >

Question 4

Is there a $\operatorname{Proj}_{(m,k)}^{J}(V)$ with **exactly one** connectivity property? If yes, under which conditions? (e.g. G = ABA but $G \neq BAB$)

■ \exists possible *j* s.t., Proj^{*j*}_(*m*,*k*)(*V*) is collinearly but not concurrently connected.

■ \exists possible j' s.t. $\operatorname{Proj}_{(m,k)}^{j'}(V)$ is concurrently but not collinearly connected

References

- S. H. Alavi and C. E. Praeger, On triple factorisations of finite groups, to appear in *J. Group Theory*.
- S. H. Alavi, J. Bamberg and C. E. Praeger, Parbolic triple factorisations and their associated geometries, in preparation.
- N. Bourbaki, Lie groups and Lie algebras. Chapters 4–6, (Springer-Verlag, 2002).
- F. Buekenhout, editor. Handbook of incidence geometry. North-Holland, Amsterdam, 1995. Buildings and foundations.
- D. Gorenstein and I. N. Herstein, A class of solvable groups, *Canad. J. Math.* **11** (1959), 311–320.
- D. G. Higman and J. E. McLaughlin, Geometric *ABA*-groups, *Illinois J. Math.* **5** (1961), 382–397.

Thank You

◆□ → ◆□ → ◆三 → ◆三 → ○ へ ⊙

Methodology

Criteria

Criteria

Let A, B < G, $\alpha := A \in \Omega_A$, and $\beta := B \in \Omega_B$.

• Geometric Criterion (Jan Saxl): *G*-action on Ω_A $G = ABA \Leftrightarrow$ the *B*-orbit α^B intersects nontrivially each G_{α} -orbit in Ω_A .

Application:

(1) [Giudici-James] $S_n = ABA$, A and B conjugate.

(2) GL(V) = ABA, A: parabolic, B: parabolic/stabiliser of $V = V_1 \oplus V_2$.

Restricted Movement Criterion: G-action on Ω_B G = ABA ⇔ Γ := β^A has restricted movement: Γ^g ∩ Γ ≠ Ø, for all g ∈ G. Application:
(1) GL(V) = BAB, A: parabolic, B: stabiliser of V = V₁ ⊕ V₂.