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Introduction

The theory of finite p-groups has changed its character over the last thirty or so years.
Apart from the heroically difficult problems associated with the Burnside groups, most
theorems concerning finite p-groups that were proved before 1980 could be proved in a few
pages at most, and used relatively little machinery. But now many areas of research in the
theory of finite p-groups involve a serious amount of theory, and require a whole book to
describe them. The coclass project is such an area, and in describing this work I shall cut
many corners, concentrating on the construction of groups rather than on the proving of
theorems.

Proofs of the basic theorems are described in the book The structure of groups of
prime-power order by Susan McKay and myself. As we shall see, the title of the group is
probably rather bombastic. Within the theory of finite p-groups our structure theorems
are universally applicable, but, as we shall see, they are not universally useful.

The coclass project has involved a large number of mathematicians; let me just ac-
knowledge the fact that the latest research that I am reporting on is joint work with
B. Eick, M.F. Newman, and E. O’Brien.

Having mentioned ‘coclass’ twice already, I should define this term.

Definition. If P is a group of order pn and nilpotency class c then the coclass of P is
n− c.

So the coclass project studies p-groups by regarding the coclass as the primary invari-
ant. But I present these lectures in part as an essay on how one can study p-groups more
generally.

The first suggestion, which is simple enough, is to find some condition that gives us
structural information, and then find some way of successively weakening the condition
in such a way that the corresponding weakening of the structural information does not
deprive the resultant theorem of interest. Here is a very simple example to illustrate the
idea. An abelian p-group has derived length 1. This is vacuous. Now we successively
weaken the condition of being abelian, taking p-groups of class at most c for c = 1, 2, 3, . . .,
and prove that a p-group of class less than 2d has derived length at most d.

Now let us start from a more subtle place. Consider the set of finite p-groups P
that have an automorphism that fixes exactly p elements of P . We shall see that these
groups satisfy strong structure theorems, and we continue to improve our understanding
of them. Now one can weaken this condition; for example by considering groups with an
automorphism of order pn that fixes exactly p element, or with an automorphism of order
p that fixes exactly pm elements. Since every p-group (of order greater than p) has an
automorphism of order p, as we increase m we see that we encompass ‘all’ finite p-groups;
so if theorems can be proved about such groups we have a universal structure theorem
for finite p-groups. Now Theorem 8.1 of E.I. Khukhro’s brilliant book ‘p-Automorphisms
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of Finite p-groups’ tells us that if P is a p-group with an automorphism group of order
p that fixes exactly pm elements of P then P has a subgroup of small index and very
small nilpotency class. Here ‘small’ means ‘bounded as a function of p and m’, and ‘very
small’ means ‘bounded as a function of p alone. Explicit bounds appear. Now I have a
group of order 317 that has an automorphism of order 3 that fixes exactly 34 elements of
my group. Computing the bound from the proof in the book (by doing Exercise 8.1) I
learn that my group has a subgroup of index at most 3492 and class 2. So this theorem is
universally applicable, but not universally useful. Now the book has been written to be
interesting rather than technical, and perhaps a much better bound than 3492 could be
proved; but even if we were to obtain the best possible bound it would still be far too big
to be universally useful.

There is a subtle point about bounds of this type. Suppose, for sake of simplicity,
that we are only interested in the case p = 3 and m = 4, and suppose that we prove that a
3-group with an automorphism corresponding to these parameters must have a subgroup
of index k and class 2 for some explicit k, and suppose that this value of k is the best
possible. This would not be the last word on the subject. There could be a much better
bound that is satisfied with only finitely many counter-examples. In the coclass project we
can prove absolute bounds and much better asymptotic bounds in many important cases.

It should be mentioned that a theorem of Khukhro (Theorem 12.15 in his book) proves
a structure theorem for p-groups P with an automorphism of order pn fixing exactly pm

points.
The coclass project starts with groups of coclass 1; but by an easy theorem, a p-group

P has an automorphism of order p that fixes exactly p elements if and only if P is a
maximal subgroup of a p-group of coclass 1. So we start from essentially the same place
as Khukhro, but move in a similar but different direction, as we, naturally, weaken our
condition by considering the class of p-groups of coclass at most r for r = 1, 2, . . . We then
produce structure theorems that are, in a sense, much stronger, than Khukhro’s We not
only prove that our groups have a subgroup of low index and low class, but we also give
rather explicit constructions for these groups, modulo a small normal subgroup. But while
boasting that our theorems are better than Khukhro’s theorems, let us suppose that our
group of order 317 has class 13, and hence has coclass 4. Now the generic bound for our
small normal subgroup, in the case of a 3-group of coclass 4, turns out to be 311934. This
is probably not best possible. In the case of 3-groups of second maximal class the generic
bound given by general theory is 3234; but the best possible generic bound is probably
34 in this case. To re-emphasise the point; our theorems, while applicable to all finite
p-groups, only give non-vacuous information about p-groups that are of order pn where n
is very much bigger than the coclass, and this will remain the case, even if we manage to
strengthen our theorems to give the best possible bounds.

A second methodological suggestion involves pro-finite groups. Let (Gn : n ≥ 0) be a
sequence of groups, where we assume, for convenience, that G0 = 〈1〉. Let πn : Gn → Gn−1

be a surjection for all n. Then the inverse limit of this system is the subgroup G of the
Cartesian product

∏
n Gn consisting of all sequences (gn) such that gnπn = gn−1 for all

n > 0. We write
G = lim

←
Gn.
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The inverse limit of a family of finite groups is called a pro-finite group, and the inverse
limit of a family of finite p-groups is called a pro-p-group. More generally, if C is any class
of finite groups the inverse limit of a family of groups in C is called a pro-C-group. Now
G comes with a topology.

∏
n Gn, as a product of finite groups, is compact; and G, as

a closed subgroup of a compact group, is compact. There is a more general definition of
a pro-finite group. The pro-finite groups that can be defined as above are the countably
based pro-finite groups. They are also the pro-finite groups whose topology can be defined
by a metric. If (gn) and (hn) are distinct elements of G then there is an i ≥ 0 such that
gj 6= hj for all j > i and gj = hj for all j ≤ i. Then define d((gn), (hn)) = 1/i.

It turns out that all infinite countably based pro-finite groups are homeomorphic to
the Cantor set.

It is usual to require a subgroup of a topological group to be closed in the containing
group, as well as being closed under multiplication and inversion. So if G is a topological
group, and X is a subset of G, the subgroup of G generated by X is the intersection of the
(closed) subgroups of G containing X, and hence is the smallest (with respect to inclusion)
(closed) subgroup of G containing X. The derived subgroup of G, the n-term γn(G) of
the lower central series of G, and so forth, are all defined as the group defined, in this
topological sense, by the set of commutators that, by definition, defines the corresponding
subgroup of a discrete group.

It is easy to see that a closed subgroup of G = lim←Gn is a subgroup of the form
lim←Hn, where, for all n, Hn is a subgroup of Gn, and πn maps Hn onto Hn−1 for all
n. The homomorphisms of Hn onto Hn−1 that define the inverse limit are, of course, the
restrictions of the πn. The open subgroups of G are the closed subgroups of finite index.
H is of finite index in G if the index of Hn in Gn is ultimately constant.

My second methodological suggestion is as follows. Suppose that we wish to study a
class C of finite p-groups. It will be convenient to assume that C is quotient closed. Now
analyse the infinite pro-C-groups. (Note that lim←Gn is infinite if and only if |Gn| tends
to infinity with n. In this case we may assume that |Gn| > |Gn−1| for all n.) If G is a pro-
C-group then every finite homomorphic image of G will be in C, since C is quotient closed;
so one infinite pro-C group gives rise to infinitely many finite groups in C. In general, not
every group in C arises in this way; but, as we shall see, finding the infinite pro-C groups
may be the first step in understanding all the groups in C.

Let us try this idea in the simplest case. Take a prime p, and define Cp to be the
class of cyclic p-groups. This class is quotient closed. I shall write the cyclic group of
order pn additively as Z/pnZ. Now define the inverse system (Z/pnZ), with πn mapping
a + pnZ to a + pn−1Z. The inverse limit is the additive group Zp of p-adic integers. We
must familiarise ourselves with this group. Let (an) ∈ Zp, so an ∈ Z/pnZ. By abuse of
notation I shall write an element a+pnZ as a when n is determined by context; so an is an
integer. So define b0 = a0 = 1; and b1 = a1, where 0 ≤ b1 < p; and then, since a2π2 = a1,
a2 = b1 + pb2, where 0 ≤ b2 < p, and, in general, an = b1 + pb2 + p2b3 + · · ·, and so we may
write any element of Zp uniquely as a formal sum

∑∞
0 bn−1p

n, where 0 ≤ bn < p for all
n. Note that we can embed Z as a subgroup of Zp by mapping any k in Z to (k), or, to
remove our abuse of notation, to (k + pnZ). Note that Z is not a closed subgroup of Zp;
any closed subgroup of a pro-finite group is finite or uncountable. In fact Z is dense in Zp,
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since any element an +pnZ is the limit in Zp of the sequence (an) in Z. In fact Zp is a ring,
with multiplication (an)(bn) = (anbn). Moreover Z is a local ring, with maximal ideal (p),
and every non-zero ideal of Z is of the form (pi) for some i > 0. The field of fractions of
Zp is the field of p-adic numbers Qp. Any element of Qp can be written uniquely in the
form

∑
n bnpn where 0 ≤ bn < p for all n, and the sum is over all integers, but subject to

the condition that bn 6= 0 for only finitely many negative values of n. For any integer i the
fractional ideal (pi) is the additive subgroup piZp.

Exercise. Prove that, in Z2

1 + 2 + 22 + 23 + · · · = −1.

Solution. The simple solution is to add 1 to the L.H.S. and show that this evaluates
to 0. The experienced reader will use the fact that the sum of any convergent infinite
geometric series of the form a + ar + ar2 + · · · is a/(1− r), which here is 1/(1− 2) = −1.

Section 1. p-groups of maximal class

It turns out that the basic theorems about p-groups of maximal class can be proved
by elementary means; though there remain unanswered questions.

In the spirit of these lectures, I shall concentrate more on constructing examples than
on proving the structure theorems.

We should start with the case p = 2. The classification of the 2-groups of maximal
class is an old and easy result; but these groups are also, in some way, typical; so that the
whole coclass project might be regarded as the fruit of people thinking about these groups
for twenty or thirty years.

Theorem. Let G be a 2-group of maximal class, and order 2n, where n ≥ 4. Then G is
isomorphic to exactly one of the following:

D2n = 〈a, t|a2 = t2
n−1

= 1, ta = t−1〉
Q2n = 〈a, t|a2 = t2

n−2
, t2

n−1
= 1, ta = t−1〉

SD2n = 〈a, t|a2 = t2
n−1

= 1, ta = t2
n−2−1〉.

These three groups are called the dihedral, (generalised) quaternion and semi-dihedral
groups of order 2n. Note that, although these groups are as far from being abelian as
possible, in that they have maximal class, they all have an abelian (in fact cyclic) group
of index 2. Note also that they all have centre 〈t2n−2〉 of order 2; and if we divide out by
this centre in all three cases the quotient is D2n−1 . It is also worth noting that if we write
these three groups as extensions of the cyclic group of order 2n−1 by the cyclic group of
order 2 then the Q2n differs from D2n in that the extension is not split, and SD2n differs
from D2n in that the action of a is different.

Since any quotient (of order greater than 4) of any one of these groups is a dihedral
group, the only infinite pro-2 group of maximal class is G = lim←D2n . Now D2n contains
a cyclic subgroup 〈t〉 of order 2n−1, and G contains the inverse limit of these subgroups,
which is Z2, as an open subgroup of index 2. So G = Z2 : C, where C is cyclic of order 2,
and acts on Z2 by multiplication by −1.

We now turn to the case of arbitrary primes.
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As suggested by our philosophy, we start by constructing the infinite pro-p groups
of maximal class. We need an analogue of the group Z2 : C2. Looking at Blackburn’s
pioneering work, perhaps as presented in Huppert’s Endliche Gruppen, it becomes clear
that, as in the case p = 2, there is exactly one such group for each prime p. This example
is constructed as follows. Let K = Kp be the p-th local cyclotomic number field, and let
O = Op be its ring of integers. Thus K = Qp[θ]/(1 + θ + · · ·+ θp−1), and O is the subring
of K that, as an additive group, is a free Zp-module with basis {1, θ, . . . , θp−2}. Now O
is a local ring, with maximal ideal P = (θ − 1), and every non-zero ideal of O is of the
form Pi. Then O = P0 > P > P2 > · · ·, and Pi : Pi+1 = p for all i ≥ 0. Now let a be
an element of order p, acting on O by multiplication by θ, and form the split extension
G = O : C where C = 〈a〉. Now it is easy to see that G/Pn−1 is a p-group of maximal
class, so G is a pro-p group of maximal class, and in fact is the unique infinite pro-p group
of maximal class.

We now turn to the study of arbitrary p-groups of maximal class.
It is convenient to assume that if G is a p-group of maximal class then G is required to

have order pn where n is at least 4. For n ≥ i ≥ 2 let Gi denote the i-th term of the lower
central series of G, so G > G2 > · · · > Gn = 〈1〉. Now G/G2 cannot have order p, since if
G is any p-group with G/γ2(G) cyclic, then G is cyclic. So since here G is of maximal class
it follows that G/G2 is isomorphic to Cp×Cp, and Gi/Gi+1 is of order p for 2 ≤ i ≤ n−1.
Now Gi/Gi+1 is a central section of G for all i; that is to say, [G, Gi] ≤ Gi+1. In fact, of
course, equality holds by definition, But Gi/Gi+2 is not a central section for i ≤ n, and
it is easy to see that the centraliser in G of Gi/Gi+2 is a maximal subgroup of G for all
i. Call his group ‘the i-th two-step centraliser of G’. Now, following Blackburn, define G1

to be the second 2-step centraliser of G; so now G > G1 > G2 > · · · is a chief series for
G. Now [Gi, Gj ] ≤ Gi+j for all i and j (defining Gk = 〈1〉 if k > n), and we define the
degree of commutaivity ` of G to be the greatest integer such that [Gi, Gj ] ≤ Gi+j+` for
all positive i and j, with a suitable convention if G1 is abelian. By definition, if the degree
of commutativity is positive then all the 2-step centralisers of G are equal.

We now come to a fundamental result.

Theorem. Let G be a p-group of maximal class of order pn and degree of commutativity
`. If p = 2 then G1 is abelian. If p = 3 then ` ≥ n − 4, so |G′1| ≤ 3. If p > 3 then
2` ≥ n− 2p + 4.

It follows at once from this theorem that the order of γ3(G1) is small (bounded in
terms of p alone), and that G has a normal subgroup of class 2 and of small index, and
that if G is of sufficiently large order then G1 is nilpotent of class at most 3.

The bound 2` ≥ n− 2p + 4 is due to Fernández-Alcober, replacing the earlier bound
of 2` ≥ n− 3p + 6 which was due independently to Shepherd and to L-G and McKay.

Rather than prove this theorem, I shall produce examples to show that these results
cannot be much improved.

The Nottingham group is the subgroup S of the group of automorphisms of the ring
Fp[[t]] consisting of automorphisms of the type t 7→

∑
i>0 ait

i where a1 = 1. For odd
primes p the lower central factors γi(S)/γi+1(S) are of order p if i 6≡ 1 mod p − 1, and
are isomorphic to Cp × Cp otherwise. So S/γp−1(S) is of maximal class, and has derived
length approximately log2(p), which is in effect as big at it can be for a group of order pp.
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So not only is the nilpotency class of G1 not bounded but neither is its derived length (as
p varies). This exemplifies the distinction between asymptotic and absolute bounds.

The following example will be of more importance to us.
Let p be an odd prime, and consider the group G(n) = G/Pn, where G = O : C is the

infinite pro-p group of maximal class. We call these the ‘main line’ groups. They are the
analogues, for odd primes, of the dihedral groups. With the notation introduced above,
G(n),i is Pi−1/Pn, and G(n),1 is abelian. We want to change this group so that G(n),1 is
replaced by a group of nilpotency class 2, and with as large a derived subgroup as possible.

We shall need to consider the exterior square of a P -module A. The tensor square A⊗A
of A is the tensor product A⊗ZA, where P acts diagonally; that is to say, (a⊗b)g = ag⊗bg,
where a, b ∈ A, and g ∈ P . And then A ∧ A is the quotient of A ⊗ A by 〈a ⊗ a : a ∈ A〉,
and the image in A ∧A of an element a⊗ b of A⊗B is denoted by a ∧ b. So if A is a free
abelian group, or a free Z/nZ-module for some n, freely generated by {a1, . . . , ad} then
A ∧A is freely generated by {ai ∧ aj : i < j}, and ai ∧ aj + aj ∧ ai = 0 for all i, j. If A is
a Zp-module then A⊗A and A ∧A are defined by replacing Z in the definitions by Zp.

Now suppose that A is a Zp(P )-module for some p-group P . If A is finite this simply
means that A is a P -module of order a power of p. Suppose that p is odd, and let
γ ∈ HomP (A∧A,A). Let B be the image of γ, and suppose that γ(a∧ b) = 0 for all a ∈ A
and b ∈ B. Now define a new binary operation · on A by

a1 · a2 = a1 + a2 + 1
2γ(a1 ∧ a2).

Note that this makes sense as p is odd. Now it is a triviality to check that A, with this
operation, is nilpotent of class 2, with [a1, a2] = γ(a1 ∧ a2), and that P acts on this group
by automorphisms, so that the split extension A : P can be constructed where A has
this new operation. This is a fundamental construction, and we shall extend it later to
non-split extensions.

We have looked at the 2-groups of maximal class, and the 3-groups of maximal class
are rather similar, and of no great interest, so let us now look at the 5-groups of maximal
class. The examples that we already have that are of interest here are finite quotients of
G = O : C, where O is the ring of integers in the 5-th cyclotomic number field, and C is
a cyclic group of order 5, so the finite groups that we have are of the form (O/Pn) : C.
To apply our construction we need to consider HomC(O/Pn ∧O/Pn,O/Pn); but it turns
out that we gain considerably in simplicity, and loose only a little in power, if we consider
instead HomC(O ∧ O,O). Now O ∧ O has rank (4

2 ) = 6, and it turns out that O ∧ O
is isomorphic to O ⊕ Z5 ⊕ Z5, and hence HomC(O ∧ O,O) is a free O-module of rank 1.
Define S ∈ Hom(O ∧ O,O) by S(x ∧ y) = σ2(x)σ−1(y) − σ−1(x)σ2(y), where σi is the
automorphism of O defined by σi(θ) = θi. Now one sees that S maps O ∧O onto P, and
more generally, if x ∈ Pi and y ∈ Pj then S(x ∧ y) ∈ Pi+j+ε, where ε = 1 if i ≡ j mod 4,
and ε = 0 otherwise.

It remains to construct suitable homomorphisms γ ∈ HomC(O/Pn ∧ O/Pn,O/Pn).
We take an element cS, where c ∈ O, such that cS induces a homomorphism, also denoted
by cS, in HomC(O/Pn ∧O/Pn,O/Pn). If c ∈ Pj−1 \ Pj then the image of cS is Pj , and
the condition that cS(x ∧ y) = 0 if x ∈ O and y ∈ Pj is satisfied if 2j ≥ n.

The conclusion is as follows:
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Theorem. If n ≥ 6 and n − 3 ≥ l and 2l ≥ n − 4 then there exist 5-groups of order 5n

and maximal class with degree of commutativity l.

The bound 2l ≥ n− 4 allows one to construct a 5-group of maximal class that have a
maximal subgroup that is nilpotent of class 2 with a big derived subgroup; that is to say,
with derived subgroup of order approximately 5n/2.

Groups constructed according to the above recipe are called constructible groups.

It is not too hard to prove that every 5-group G of maximal class has a small normal
subgroup N such that G/N is constructible. In fact I think we can take |N | = p, so N is
the centre of G (or trivial).

It is also not hard to construct the graph defined by all 5-groups of maximal class,
where the vertices are the isomorphism classes of 5-groups of maximal class, and vertex
joins a group G to G/ζ(G), where ζ(G) is the centre of G. It follows, from examining this
graph, that the number of isomorphism classes of 5-groups of order n and maximal class
is bounded by a function that is linear in n.

This analysis now extends to cover p-groups of maximal class for any prime p ≥ 5. If
2 ≤ a ≤ (p−1)/2 define Sa ∈ HomC(O∧O,O) by Sa(x∧y) = σa(x)σ1−a(y)−σ1−a(x)σa(y),
where now O is the ring of integers in the p-th local cyclotomic number field, and C is
the cyclic group of order p. Now HomC(K ∧ K, K) is of dimension (p − 3)/2 with these
homomorphisms Sa as a basis, so in constructing HomC(O/Pn∧O/Pn,O/Pn) we will have
(p−3)/2 parameters to choose, and every vertex of the graph that is not a leaf will have at
least p(p−5)/2 immediate descendants; so for p > 5 the number of p-groups of maximal class
and order pn increases exponentially with n. There remain serious unanswered questions
about the groups of maximal class for p > 5, but the above exponential explosion inhibits
computation.

Pro-p groups of finite coclass

A difficult theorem (with two very different but difficult proofs) asserts that every
infinite pro-p group G of finite coclass r is an extension of a free Zp-module T of finite
rank by a p-group P . It is easy to see that this is equivalent to the statement that every
pro-p group of finite coclass is soluble. If G (as above) has a non-trivial centre A then A
is finite, and if A is of order ph then G/A is if coclass r − h (so h < r), and we lose little
by assuming that the centre of G is trivial. In this case P acts faithfully on T , and G is a
p-adic space group of coclass r. It is not hard to prove that if every pro-p-group G of finite
coclass, with trivial centre, is a p-adic space group then there are only finitely many p-adic
space groups of given coclass r. However, it is by no means obvious that there are only
finitely many p-adic space groups of given coclass r. As possible indications of the fact
that we are dealing here with rather difficult theorems, I remark that there exist infinite
pro-p groups G, some p-adic analytic and others not, with the property that the coclass
of G/γn(G) tends to infinity rather slowly. More striking is the following table, due to
Bettina Eick.

7



r p = 2 p = 3 p = 5
1 1 1 1
2 2 10 95
3 21 1271 1,110,136,753,555,665
4 268 137,299,952,383
5 15013

This gives the number of p-adic space groups of coclass r, for some values of p and r.
Let us check these entries.

The first row is easy; we have seen that there is a unique infinite pro-p group of coclass
1 for any prime p. Before checking the other entries, a little theory.

A p-adic space group G of finite coclass r has a unique maximal abelian normal
subgroup T , and since the quotient P = G/T acts irreducibly on T it follows, by elementary
representation theory, that T is of rank px(p − 1) for some integer x, and a theorem of
Susan McKay’s tells us that x ≤ r − 1. Suppose first that p is odd. Then the maximal
finite p-groups contained in GL((p−1)px,Qp) are all conjugate, and are isomorphic to the
iterated wreath product of r copies of Cp, and may be constructed as follows. If x = 0
then we have seen how Cp acts on the p-h cyclotomic number field, which has dimension
p− 1 over Qp. If x = 1 then we can form the direct sum of p copies of this number field,
and Cp o Cp acts naturally on this direct sum, and so forth. Thus the case x = 0 is the
only primitive example. Note that these examples can be equally well defined over Z,
rather than over Zp. If p = 2 another, rather unexpected example arises. The generalised
quaternion group of order 16 acts irreducibly and primitively as a subgroup of GL(4,Q2),
but not as a subgroup of GL(4,Q), which does not contain a copy of Q16. Thus GL(4,Q2)
has two conjugacy classes of maximal finite 2-groups, the iterated wreath product of 3 copes
of C2, which has order 128, and the quaternion group of order 16. Similarly GL(8,Q2)
contains 2 conjugacy of maximal finite 2-subgroups, namely the iterated wreath product
of 4 copies of C2, and Q16 o C2; and so forth.

Of course a finite p-group can be embedded in GL(d,Qp) if and only if it can be
embedded in GL(d,Zp), and we are more concerned here with GL(d,Zp). The reason for
considering GL(d,Qp) is that subgroups of GL(d,Zp) that are conjugate in GL(d,Qp) need
not be conjugate in GL(d,Zp). This is to say, if P is the p-group in question, then P may
act faithfully on a Zp-module T of rank d, and there may be a sub-P -module S of T that
is not isomorphic to T . Thus S and T define embeddings of P into GL(d,Zp) that are not
conjugate in GL(d,Zp), but are conjugate in GL(d,Qp).

We shall say that P acts uniserially on T if the following condition is satisfied. Define
T0 = T , and Ti = [Ti−1, P ] for i > 0. Then the condition is that T : Ti = pi for all i.
If this condition is satisfied then the non-zero P -submodules of T are all equal to Ti for
some i. It is a triviality to see that a p-adic space group G = T.P is of finite coclass if and
only if P acts uniserially on T . The big question is: what is this coclass? It is easy to see
that if P is of order pn then the coclass of G is at most n, and achieves this bound if and
only if the extension splits, so G = T : P . It is also clear that the coclass of G is at least
equal to the coclass of P ; whether this bound can be achieved I don’t know; probably not.
Another unknown. Is it the case that, for odd primes p, the coclass of P tends to infinity
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with the coclass of G? For p = 2 this fails. It is easy to show how the dihedral group of
order 2n acts uniserially in dimension 2n−1; but D2n has coclass 1.

We now want a criterion for a p-group to act unserially. Let me restrict myself to the
case when P is embedded in the wreath product W of x + 1 copies of Cp (for example, if
p is odd). Now W/W ′ is the direct product of x + 1 copies of Cp, which we shall write as
the direct sum V of x + 1 copies of Z/pZ, and V comes provided with a frame. That is to
say, if we choose a generator for each copy of Cp this will give rise to a basis for V , and
each basis vector is unique up to a constant multiple, as we change the choice of generator
for Cp. Now define a co-ordinate hyperplane to be the subspace of V spanned by all but
one of these basis vectors, so V has x + 1 co-ordinate hyperplanes. Then it is easy to see
that P acts uniserially on V if and only if the image of P in W/W ′ does not lie in any
co-ordinate hyperplane.

Armed with this information, we can check the second row of Eick’s table. We start
with r = p = 2. We have G = T.P , where P is a Z2-module of rank 1 or 2. If T has rank
1 then P has order 2 (as P acts faithfully by assumption), and we are led to G = Z2 : C2;
but then G has coclass 1; so T must have rank 2. Now P is a subgroup of C2 o C2, and
if P is to act uniserially it is easy to see that P must be C4 or P = D8. If P = C4 then
we may assume that T is the ring of integers O in the 2-nd cyclotomic number field, so
T = Z2[θ]/(θ2 + 1), and P is generated by an element a that acts by multiplication by
θ. Then G = T : P has coclass 2, as required. We see that the submodules of T are all
isomorphic to T , and so this is the only example with point group C4. Now we consider
the case P = D8. We need to construct an example T.P that is not split; for otherwise G
would have coclass 3. So we take P = 〈a, b : a4 = b2 = 1, ab = a−1〉, and first construct the
extension H = T : P , where H = 〈a, b, t : a4 = b2 = 1, ab = a−1, [t, ta] = ta

2
t = 1, tb = 1〉,

and then define G = 〈a, bt〉. It is easy enough to check that G has coclass 2, and that any
pro-2-group of coclass 2 with point group D8 is isomorphic to G. There is one subtle point.
If Ti is the P -submodule of T of index pi then Ti

∼= Ti+2 for all i, indeed Ti+2 = 2Ti, but
T0 6∼= T1, since b centralises t, but centralises no element of T1 \ T2. So if t1 = [t, a] and
G1 = 〈a, bt1〉 then G = T1.D8 and G1 = T2.D8, so how are these groups isomorphic? The
answer is that there is an outer automorphism of D8 that takes b to ab, and it is easy to
see that ab centralises t1, so this automorphism extends to an isomorphism of G onto G1.

The other entries in the table may be checked in the same way.
The definition of ‘consructible group’ needs to be extended to include p-groups of

coclass r. In the case of a split space group T : P there is no problem, and a constructible
group is defined in terms of homomorphisms in HomP (T ∧ T, T ). If the space group
G = T.P is not split then G is a subgroup of finite index in a split space group H = T−i : P
for some (small) i, and a constructible group for G is a corresponding subgroup of a
constructible group for H.

Classification up to isomorphism

We have seen how to construct all pro-p groups of finite coclass, and from these we
have seen how to construct all constructible groups. Moreover, every sufficiently large
p-group P of coclass r has a normal subgroup N of (p, r)-bounded order such that P/N is
constructible.. It remains to classify the p-groups of coclass r up to isomorphism. This is
ambitious, so our classification theorem (or rather conjecture) is not completely explicit.
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Define a graph G(p, r) whose vertices are the p-groups of coclass at most r, and whose
edges join a group G of class c to G/γc(G). The infinite chains in G(p, r) \ G(p, r − 1)
correspond to the pro-p groups of coclass r. There are only finitely many of these infinite
chains, so if |P | is big enough then P can lie in at most one infinite chain. In this case P
is a main line group for the corresponding pro-p group. So D2n is a main line group for
Z2 : C2. Now let G(p, r, k) be the full subgraph of G(p, r) consisting of groups that are
at a distance (in the graph) of at most k from a main line group. If p = 2 then for some
k = k(r) almost all groups in G(p, r) \G(p, r− 1) lie in G(p, r, k). Note that k(1) = 1. Now
let G(G, k, i), where G is a pro-p group of coclass r, be the subgraph of G(p, r, k) whose
nearest (in the graph) mainline ancestor has order pi (so i must not be too small) and that
is a quotient of G. If i is big enough, and if G = T.P where T has rank d, then G(G, k, i)
is isomorphic to G(G, k, i + d). This theorem was first proved by Marcus duSautoy, using
zeta functions, and later by Eick and L-G using cohomology, and finding explicit bounds.

It will be seen that this reduces the calculation of G(p, r, k) to a finite calculation for
given p, r, k, and hence, for p = 2, reduces the calculation of G(p, r) to a finite calculation
for any given r.

For odd primes the situation is more complicated, but a conjecture in a paper by Eick,
L-G, Newman and O’Brien http://www.math.auckland.ac.nz/õbrien/research/coclass.pdf
will, if proved, reduce the construction of G(p, r) to a finite calculation for all p and r.
That is to say, a single calculation for each fixed value of p and r. The bulk of this
paper is concerned with the 3-groups of coclass 2. In particular, we construct all the
constructible groups, which is easy, and determine their isomorphism classes, which is a
delicate matter. This raises our understanding of the 3-groups of coclass 2 to the same
level as our understanding of the 5-groups of maximal class. A proof of the conjecture
(with sensible bounds) will enable us to complete the classification in both cases, and we
will then have a complete classification of the p-groups of coclass r (given a little more
computation) for (p, r) ∈ {(2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (5, 1)}. The case (2, 4) may be
(or become) technically feasible.

My thanks to the organisers for their very many kindnesses, and for organising such
a splendid and unforgettable conference.
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