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CONJUGACY CLASSES IN FINITE p-GROUPS

Avinoam Mann

If G is a finite p-group, the sizes of its conjugacy classes are powers of p. This is
essentially the only restriction on these sizes, as is seen from

Theorem 1 (J.Cossey - T.O.Hawkes [CH]). Given any finite set S of powers
of p, including 1, there exists a p-group whose conjugacy class sizes are exactly the
members of S.

The groups constructed by Cossey and Hawkes are of nilpotency class 2.

Problem 1. Find other constructions, in particular ones that produce groups of
higher class.

Of course, in that problem we have to take into account that the class sizes
impose restrictions on the group structure. E.g. if the sizes are {1, p}, then the
nilpotency class has to be 2. More precisely: the class sizes of a p-group G are
{1, p} iff |G′| = p (Knoche; see also Theorem 3 below). But we can ask, e.g., if,
given any set S ≠ {1, p} of p-powers, does there exist a group of class 3 whose class
sizes are the members of S.

Given an element x ∈ G whose class size is pb, we say that b = b(x) is the breadth
of x. The breadth b(G) of G is the maximal breadth of its elements. There is much
interest in the relation of this invariant to other invariants of G which measure its
departure from commutativity. The following is obvious.

Proposition 2. If |G′| = pk and |G : Z(G)| = pz, then b(G) ≤ k and b(G) ≤ z−1.

Equality is possible in both inequalities, and one of them has a converse.

Theorem 3 (M.R.Vaughan-Lee [VL]). If b(G) = b and |G′| = pk, then k ≤
b(b+ 1)/2.

Again equality is possible. There is no bound for |G : Z(G)| in terms of b(G),
consider extraspecial groups. But a bound on |G′| imposes a bound on |G : Z2(G)|.
For explicit estimates see, e.g., [PS].

It follows from Theorem 3 that the nilpotency class cl(G) is bounded in terms
of b(G), but that theorem does not yield the best bound. For a long time many
people believed the following

Class - breadth conjecture. A group of breadth b and class c satisfies c ≤ b+1.

This holds, e.g., if either the breadth is at most p+ 1, or if the class is at most
p+3, or if G is metabelian, and in various other cases. In any case, a linear bound
holds.
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Theorem 4 (C.R.Leedham-Green-P.M.Neumann-J.Wiegold [LGNW]).

cl(G) ≤ p

p− 1
b(G) + 1.

This is proved by a nice counting argument, introducing the important notion of
2-step centralizers. Let γi(G) be the ith member of the upper central series of G.
The subgroup Ci(G) = CG(γi(G)/γi+1(G)) is the ith 2-step centralizer of G. There
are c − 1 such centralizers (here c = cl(G)), and they are proper subgroups of G.
Suppose that x /∈ Cc−1(G) = CG(γc−1(G)). Since γc−1(G)/γc(G) ≤ Z(G/γc(G)) ≤
CG/γc(G)(xγc(G)), we obtain b(xγc(G)) < b(x). Now suppose that x /∈ ∪Ci(G).
Then looking successively in the factor groupsG/γi(G), we see that b(x) ≥ cl(G)−1.
This implies the class breadth conjecture, provided we can find an appropriate x.
If cl(G) ≤ p+1, then the number of 2-step centralizers is at most p, and since a p-
group cannot be the union of p proper subgroups, there is an element x as required.
An easy application of the three subgroups lemma shows that C1 ≤ Ci, for all i, and
therefore C1 can be omitted from the above considerations. This shows that the
class breadth conjecture holds if cl(G) ≤ p+2, and some elaboration of the argument
yields the other cases mentioned above. In the general case we cannot ensure
that x exists, but, using the fact that we are dealing with proper subgroups, the
authors of [LGNW] estimate the average number of 2-step centralizers containing
each element, and from this they estimate the average of b(x) and deduce Theorem
4.

For p = 2 the inequality can be improved

Proposition 5 (M.Cartwright [C]). cl(G) ≤ 5
3b(G) + 1.

The class-breadth conjecture was eventually disproved by V.Felsch [F], using
computer calculations to construct a counter example of order 234. Moreover,
W.Felsch et al constructed 2-groups in which the difference c− b can be arbitrarily
big [FNP]. In these examples c is about b+

√
b. No counter examples for odd primes

are known.

Problem 2. Construct counter examples for odd primes (alternatively, prove that
they do not exist).

The nilpotency class can be bounded under weaker assumptions than in Theorem
4.

Theorem 6 (C.R.vaughan-Lee - J.Wiegold [VLW]). If G is generated by
elements of breadth at most b, then cl(G) ≤ b2 + 1.

The author has improved the bound slightly, to cl(G) ≤ b2−b+1 (provided that
b > 1) [M2].

Next, let s = s(G) be the minimal breadth of non-central elements of G. The
elements, and classes, of breadth s are called minimal, and the difference d = b− s
is the gap of G. Y.Barnea and I.M.Isaacs conjectured that cl(G) is bounded by a
function of d [YB]. This indeed holds.

Theorem 7 (A.Jaikin-Zapirain [JZ1]). cl(G) ≤ 2d2 + 2d+ 3.

Problem 3. Can the bounds in Theorems 4 to 7 be significantly improved?

Substituting d = 0 in Theorem 7 yields
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Corollary 8 (K.Ishikawa [I]). If all non-central classes of G have the same size,
then cl(G) ≤ 3.

Let us go back in history. In the 1950’s N.Ito initiated a series of papers discussing
finite groups with a small number of conjugacy class sizes. In particular, if all non-
central classes have the same size, then Ito showed that G ∼= P × A, where P is a
p-group and A is abelian [It]. That focuses the problem on p-groups, for which Ito
proved the existence of a normal abelian subgroup N such that G/N has exponent
p. This was improved by Isaacs [Is1], who showed that actually exp(G/Z(G)) = p
(this was reproved later, in ignorance of Isaacs and of each other, by both the
author [M1] and L.Verardi [V]). Groups of exponent 2 are abelian, and the ones
of exponent 3 have nilpotency class at most 3, and thus Isaacs’ result implies that
for p = 2 the class of G is 2, and for p = 3 the class is at most 4, but for larger
primes we cannot say much, because groups of prime exponent are quite difficult to
understand. Then Ishikawa made a break-through by proving Corollary 8 (which
is best possible for odd primes). This prompted the Barnea-Isaacs conjecture.
Jaikin’s proof of the conjecture is by a highly non-trivial modification of Ishikawa’s
argument. That argument actually shows that it suffices to assume that G is
generated by its minimal elements. The author generalized this to

Theorem 9 (A.Mann [M4]). Let G be a p-group, and let M(G) be the subgroup
that is generated by all the minimal elements. Then cl(M(G)) ≤ 3.

The proof is independent of Ishikawa’s, and provides a shorter and simpler proof
of his result. Moreover, while Corollary 8 deals with a severely restricted class of
groups, Theorem 9 states a property of all p-groups. Following the proof of Theorem
9, I formulated several conjectures (these certainly occurred also to other authors).
Let the conjugacy classes of G have sizes n1 = 1 < n2 = pbs < ... < nt = pb(G).

Conjecture A. Let G be a finite p-group, and let the numbers t, ni be as above.
Then there exists a function f(r) such that the subgroup Hr of G generated by the
classes of sizes n1, ..., nr has derived length dl(Hr) at most f(r).

Conjecture B. If G is generated by the classes of sizes n1, ..., nr, then dl(G) ≤
f(r), for some function of r.

Note that this is implied by Conjecture A, but is not equivalent to it, because
the class sizes in Hr may be different from the class sizes in G of the elements of
Hr.

The following is still weaker.

Conjecture C. The derived length of G is bounded by a function f(t) of t.

Note also that if t ≥ 3, we cannot bound cl(G). Consider a non-abelian group
containing an abelian maximal group. Then t = 3, but there are such groups of
arbitrarily high class. One motivation for the conjectures is the fact that the ”dual”
claims, obtained by replacing class sizes by irreducible character degrees, hold: let
Nr be the intersection of the kernels of the irreducible characters of G of the r
smallest degrees. Then dl(G/Nr) ≤ r. This is even true for all soluble groups, with
bound 2r, and conjecturally with much better bounds.

A variation on all three conjectures is obtained by allowing the functions f(r) to
depend also on p. Theorem 9, combined with the properties of groups of exponents
2 and 3, and with Theorem 13 below, implies
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Proposition 10 ([M3], [M4]). If t = 3 and p = 2 then G is metabelian, and if
t = 3 and p = 3 then dl(G) ≤ 4.

One more special case is known.

Theorem 11 - (Mann [M5]). Let G be a finite 2-group, and let H3 be the sub-
group which is generated by the classes of size n2 and n3. Then cl(H3 ∩ G2) ≤ 3
and dl(H3) ≤ 3.

Corollary 12. Let G be a 2-group in which t = 4. Then dl(G) ≤ 3.

There are examples of groups with t = 4 and derived length 3, but these con-
structions are for p ≥ 5 [IM].

One of the difficulties in proving the conjectures and related results is that in-
duction is often not available, because the number t can increase when we move
from G to a subgroup or a factor group. The key to proving Theorem 9 was con-
centrating on the breadth of one element, rather than of the full group. Take an
element x ∈ G. Since GG(x) ≤ CG(x

p), we have b(xp) ≤ b(x), and it is to be
expected the usually the inequality is strict. Of course, this need not always be the
case. If memory serves, I have heard from K.Harada, discussing the classification
of the finite simple groups, the dictum: concentrate all the bad things in one place.
Thus we make the

Definition. The centralizer equality subgroup D(G) of G is given by

D(G) = ⟨x | x ∈ G, CG(x
p) = CG(x)⟩.

Theorem 13 (Mann [M3]). The centralizer equality subgroup is abelian.

This is rather surprising, because we do not expect distinct elements with the
defining property of D(G) to be related to each other. Nevertheless, the proof,
which was suggested by an argument in [Is1], is quite simple.

Proof. Suppose that D(G) is not abelian. Then there exists an element z ∈
Z2(D(G)) − Z(D(G)), zp ∈ Z(D(G)). Let x be one of the defining elements of
D(G), and write H = ⟨x, z⟩. Then cl(H) ≤ 2, implying [xp, z] = [x, zp] = 1, and
thus z ∈ CG(x

p) = CG(x). Therefore z commutes with all the defining elements of
D(G), i.e. z ∈ Z(D(G)), a contradiction.

Corollary 14. With the notations of Conjecture A, G contains a normal abelian
subgroup D such that exp(G/D) ≤ pt−1.

Proof. For x ∈ G, among the t + 1 elements x, xp, ..., xpt

there must be two
with the same class size, and therefore the same centralizer. If these elements are

xpi

and xpi+1

, then i ≤ t− 1 and xpi ∈ D(G).
For p = 2, it is possible to show that exp(G/D) ≤ 2t−2.
Another breadth diminishing device is given in the following

Proposition 15. Let A be a normal abelian subgroup of the finite group G, let
z ∈ A and x ∈ G. If x /∈ Z(G), then the conjugacy class of [x, z] has size smaller
than that of the class of x.

Proof. Our original proof, by induction, applied only to p-groups. The present
proof is due to Isaacs [Is2] and it applies to all finite groups. First, induction shows
that we may assume that G = ACG(x). Then [A, x] ▹ G, and |[A, x]| > 1 is the
size of the conjugacy class of x. Since [x, z] ∈ [A, x], all the conjugates of [x, z] lie
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in [A, x], but they do not exhaust that subgroup, hence their number is less than
|[A, x]|.

Proof of Theorem 9. Write N = M(G), and let A be maximal among the
normal abelian subgroups of G that are contained in N . Then CN (A) = A. If x is a
minimal element, the last proposition shows that [A, x] ≤ Z(G). Since the minimal
elements generate N , it follows that A ≤ Z2(N). Then N ′ ≤ CN (A) = A, and thus
N ′ ≤ Z2(N), implying cl(N) ≤ 3.

If p = 2, a separate argument shows that cl(M(G)) ≤ 2, but for odd primes the
class can be 3.

Since Proposition 15 holds for all finite groups, the conclusion of Theorem 9
holds also for many groups that are not necessarily p-groups, e.g. for supersoluble
groups. For these results, see [Is2] and [M6].

Proof of Proposition 10 (sketch). The product N = D(G)M(G) has nilpo-
tency class at most 4, and G/N has exponent p. This, combined with properties
of groups of exponent 2 or 3, shows that there is a bound on the derived length
of the groups mentioned in the proposition. To obtain the exact bounds there, we
show that D(G) centralizes M(G), hence cl(N) ≤ 3. This suffices for p = 3, while
if p = 2 a little more argument is necessary.

There is a variation on Proposition 15.

Proposition 16. Under the assumptions and notations of Proposition 15, let y =
[z, x, ..., x], with k occurrences of x. If b(x) ≥ k, then b(y) ≤ b(x)− k.

Recall the notion of the gap of G, that was defined above, preceding Theorem
7. Proposition 16 implies that if the gap equals d, then the elements of A become
so called right (d+1)-Engel elements in G/Z(G). Consider the case d = 1. For odd
primes, right 2-Engel elements lie in Z3(G). It follows that A ≤ Z4(G). If we take
A to be a maximal normal abelian subgroup of G, then γ4(G) ≤ CG(A) = A ≤
Z4(G), implying cl(G) ≤ 7. This recaptures a special case of Theorem 7, and it is
intriguing that this argument, which is very different from the one proving Theorem
7, produces the same bound.

We conclude by mentioning still one more type of results. Using the notations
preceding Conjecture A, let there be mi classes of size ni. The nature of these
numbers is far from clear. Obviously, m1 = |Z(G)| is a power of p. The other
mi’s are multiples of p − 1, and the papers [Mc],[LMM],[M3],[JZNO] discuss the
possibility of equality mi = p− 1 for some i. One major result is

Theorem 17 - (Jaikin-Zapirain [JZ2]). Given a number A, there are only
finitely many p-groups for which mi ≤ A, for all i.

This was extended to all finite soluble groups [JZ3], and conjecturally it holds
for all finite groups, see [Ng]. The corresponding result for character degrees holds
[Cr].
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