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Brauer’s k(B)-problem; part 1

Our story begins with Brauer’s k(B)-problem.

Let G be a finite group, p a prime, and F an algebraically closed
field of characteristic p. Then the group algebra FG can uniquely
be written as the sum FG = B1 ⊕ · · · ⊕ B` of minimal two-sided
ideals called p-blocks.

Let M be an indecomposable FG -module. Then there is one and
only one p-block B of FG which does not annihilate M. In this
case we say that M lies inside the block B. In particular every
irreducible FG -module lies inside some block of FG .
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Brauer’s k(B)-problem; part 2

It is useful to take a particular algebraically closed field F of
characteristic p. Let C be the field of complex numbers, let R be
the ring of all algebraic integers in C, and let I be a maximal ideal
of R containing pR. Then F = R/I is an algebraically closed field
of characteristic p.

Let ∗ : R → F be the natural homomorphism (with kernel I ).

U = {ε ∈ C : εm = 1 for some m ∈ Z with p - m}.

Clearly, U ⊆ R and ∗ maps U isomorphically onto F ∗.
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Brauer’s k(B)-problem; part 3

Let M be an FG -module and let X be an associated
F -representation of G . Let C be the set of p-regular elements of
G . We define ϕ : C → C as follows. Let x ∈ C and let
ε1, . . . , εf ∈ F ∗ be the eigenvalues of X (x), counting multiplicities.
For each i there exists a unique ui ∈ U such that u∗i = εi . Put

ϕ(x) =
∑f

i=1 ui . This function ϕ is called the Brauer character of
G afforded by X . If X is an irreducible representation then ϕ is
called an irreducible Brauer character. The set of irreducible
Brauer characters is denoted by IBr(G ). Each irreducible Brauer
character is associated to a p-block B.
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Brauer’s k(B)-problem; part 4

Let Irr(G ) be the set of complex irreducible characters of G . For
χ ∈ Irr(G ) let χ̂ be the restriction of χ to C. The class function χ̂
can be written as a non-negative integer combination of irreducible
Brauer characters belonging to a unique p-block B. In this case we
say that χ belongs to the p-block B. Let k(B) be the number of
complex irreducible characters of G belonging to the p-block B.

Let K be a conjugacy class of G . The Sylow p-subgroups of CG (x)
for x ∈ K are called the p-defect groups for K. Let B be a p-block
of G . Then the p-defect groups of the defect classes of B are
called defect groups of B.

Conjecture (Brauer, 1959).

Let B be a p-block of a finite group G and let D be a defect group
of B. Then k(B) ≤ |D|.
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Nagao’s theorem

In 1962 Nagao showed that for p-solvable groups G Brauer’s
k(B)-problem is equivalent to the so-called k(GV )-problem.

To state this conjecture, for a finite group H let k(H) be the
number of conjugacy classes of H which is also |Irr(H)|.

k(GV )-problem (Nagao, 1962).

Let F be a finite field and G a finite group. Let V be a finite
faithful FG -module. Form the semidirect product GV . If
(|G |, |V |) = 1 then k(GV ) ≤ |V |.
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A few lines about the proof of the k(GV )-problem

Works of Gow, Knörr, and especially Robinson-Thompson have led
to fundamental breakthroughs in attacking the k(GV )-problem
which have culminated in a complete solution of the conjecture,
with the final step completed in 2004 by Gluck, Magaard, Riese,
Schmid. The full solution of the problem (not counting the
Classification of Finite Simple Groups) is about 500 pages long. A
250 page long book was written about the k(GV )-problem in late
2007 by Schmid.

Keller introduced a different approach to the k(GV )-problem
which gave the result in case the characteristic of the underlying
field is sufficiently large.
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Summary of the proof of the k(GV )-problem; part 1

Nagao showed that for a normal subgroup N of a finite group X
we have k(X ) ≤ k(N)k(X/N). This may suggest that the
k(GV )-problem has a good inductive nature. But unfortunately
this is not the case.

On the other hand, this result of Nagao (and a bit more) enables
us to reduce the k(GV )-problem to the case where V is an
irreducible FG -module.
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Summary of the proof of the k(GV )-problem; part 2

Theorem (Knörr, 1984).

Let V be a finite faithful coprime FG -module. If there exists a
vector v in V with CG (v) abelian then k(GV ) ≤ |V |.

Let V be a coprime FG -module with F a finite field. We know
that V is isomorphic to Irr(V ) = Hom(V ,C∗) as a G -set. The
FG -module V ∗ = HomF (V ,F ), with diagonal action
λx(v) = λ(vx−1) for λ ∈ V ∗, x ∈ G , v ∈ V , is called the dual
module to V . The module V is self-dual provided V ∼= V ∗ (as
FG -modules). It can be shown that V is self-dual if and only if its
Brauer character is real-valued.
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Summary of the proof of the k(GV )-problem; part 3

Definition

Let V be a finite faithful coprime FG -module.
(a) A vector v ∈ V is called real for G if the restriction to CG (v)
of V contains a faithful self-dual submodule (with real-valued
Brauer character).
(b) A vector v ∈ V is called strongly real for G if the restriction to
CG (v) of V is self-dual.

Theorem (Robinson, Thompson, 1996).

Suppose V is a finite faithful coprime FG -module and some v ∈ V
is real for G . Then k(GV ) ≤ |V | and equality can only hold when
v is strongly real for G .
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Summary of the proof of the k(GV )-problem; part 4

Let V be a finite, faithful coprime FG -module. Assume there is no
(strongly) real vector in V for G but that (G ,V ) is a minimal
counterexample in the following sense:
Whenever G0 is a central extension of a subgroup of G by a
p′-subgroup and V0 is an F0G0-module for which char(F0) = p and
dimF0 V0 < dimF V , then there is a (strongly) real vector in V0 for
G0.

Theorem

Suppose (G ,V ) is a minimal counterexample in the above sense
(for real or strongly real vectors). Then G has a unique minimal
nonabelian normal subgroup, say E , and this is either quasisimple
or of extraspecial type. Moreover E is absolutely irreducible on V ,
and all abelian normal subgroups of G are cyclic and central.

G reduced; (G ,V ) reduced pair; (G ,V ) nonreal reduced pair.
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Summary of the proof of the k(GV )-problem; part 5

Theorem

Up to isomorphism there are just 9 nonreal reduced pairs of
extraspecial type. All other reduced pairs (G ,V ) of extraspecial
type admit a strongly real vector v ∈ V for G such that CG (v) has
a regular orbit on V .

Theorem

Up to isomorphism there are exactly 11 nonreal reduced pairs of
quasisimple type. All other reduced pairs (G ,V ) of quasisimple
type admit a real vector v ∈ V such that CG (v) has a regular orbit
on V .
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Summary of the proof of the k(GV )-problem; part 6

We call a pair (G ,V ) nonreal induced provided V is a faithful
coprime FG -module which admits no real vector for G and which
is induced from some nonreal reduced pair (H,W ), that is,
V = IndGG0

(W ) for some subgroup G0 of G satisfying
H ∼= G0/CG0(W ).

Theorem (Riese, Schmid).

Let V be a faithful, irreducible, coprime FG -module admitting no
real vector for G . Then (G ,V ) is nonreal induced (from a nonreal
reduced pair (H,W )) and G is not far from being a wreath
product H o S for some permutation group S .
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Summary of the proof of the k(GV )-problem; part 7

Theorem (Liebeck, Pyber).

If S is a permutation group of degree n, then k(S) ≤ 2n−1.

Theorem (Riese, Schmid).

Let (G ,V ) be properly induced from the nonreal reduced pair
(H,W ). Then k(GV ) ≤ 1

2 |V |, except possibly when p = 5.

Theorem (Gluck, Magaard, Riese, Schmid).

Let (G ,V ) be induced from the nonreal reduced pair (H,W ) in
characteristic p = 5. Then we have k(GV ) < |V |.
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Background on the non-coprime k(GV )-problem; part 1

The non-coprime k(GV )-problem (first form).

What can be said about k(GV ) if we drop the assumption that
(|G |, |V |) = 1 but assume that V is a completely reducible
G -module?

The following lemma appeared as a tool in the paper of
Guralnick-Tiep and it is a special case of the so-called
Clifford-Gallagher formula.

Lemma.

Let G be a group of linear transformations of the finite vector
space V , and let GV be the semidirect product of V and G . Then

k(GV ) =
∑

k(StabG (λ))

where the sum is over a set of representatives λ ∈ Irr(V ) of the
G -orbits of Irr(V ).
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Background on the non-coprime k(GV )-problem; part 2

The following example was noticed by Fulman and Guralnick.

Example 1. Let G = GL(n, p) for a prime p and a positive integer
n. Then GV = AGL(n, p). By the Lemma above,
k(GV ) = k(G ) + k(AGL(n − 1, p)). Using induction, we have

k(GV ) = k(GL(n, p))+k(GL(n−1, p))+. . .+k(GL(2, p))+k(AGL(1, p)).

By a result of Green (1955), we have
pm − pm−1 < k(GL(m, p)) ≤ pm − 1. Clearly, k(AGL(1, p)) = p.
This gives |V | < k(GV ) < 2|V |.
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Background on the non-coprime k(GV )-problem; part 3
The next example depends on an easy lemma we do not mention.
Example 2. Let G = GL(2, p) o Cm. This group acts faithfully and

irreducibly on V = F
(2m)
p . We have k(GV ) ≥ 1

m (p
2+p−1
p2 )

m
|V |.

The non-coprime k(GV )-problem (second form).

In the setup of the previous problem does there exists a universal
positive constant c such that k(GV ) ≤ cn|V | where n is the
dimension of V ?

Theorem (Kovács, Robinson).

Let V be a faithful completely reducible G -module where G is a
finite p-solvable group. Then k(GV ) ≤ cn|V | for some universal
constant c.

Later Liebeck and Pyber showed that c can be taken to be 103.
All this was prior to the solution of the (classical) k(GV )-problem.
By the k(GV )-theorem we can say more. When G is a p-solvable

group we have k(GV ) ≤ |GV |p < pnp/(p−1)2
|V |. 17 / 33



Background on the non-coprime k(GV )-problem; part 4

Non-coprime k(GV )-problem (third form) (Guralnick, Tiep).

In the setup of the previous two problems can one classify all
groups G with k(GV ) > |V |?

Theorem (Guralnick, Tiep).

Let G be almost quasisimple and faithful, irreducible on V . Then
k(GV ) ≤ 1

2 |V | provided G does not involve An for 5 ≤ n ≤ 16 or a
group of Lie type of (untwisted) rank at most 6 or a classical
group with V related to the standard module.

Keller has worked on the imprimitive case of the non-coprime
k(GV )-problem. He also developed character theoretic arguments
along the lines of Knörr.

Theorem (Keller).

Under strong conditions there exists a universal constant c such
that k(GV ) ≤ c|V | log |V |.
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The rest of the talk will be based on a work in
preparation with Robert M. Guralnick entitled ”On
the non-coprime k(GV )-problem”.
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The first theorem

Let r be a prime. An r -group R is said to be of symplectic type if
either r is odd and R is extraspecial of exponent r , or r = 2,
R/Z (R) is elementary abelian, R ′ has order 2, R has exponent 4
and Z (R) has order 2 (in which case R is extraspecial) or has order
4.
The first theorem of the paper is the following.

Theorem (Guralnick, M).

Let r be a prime and let R be an r -group of symplectic type with
|R/Z (R)| = r2a for some positive integer a. Let V be a faithful,
absolutely irreducible KR-module of dimension ra for some finite
field K . View V as an F -vector space where F is the prime field of
K . Let G be a subgroup of GL(V ) which contains R as a normal
subgroup. Then k(GV ) ≤ max{|V |, 588}.
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On the proof of the first theorem; part 1
Given an element x in G . Our first task is to give an upper bound
for dimF (CV (x)).
For this we may assume that F is an algebraically closed field (of
characteristic p > 0).
More precisely, in many cases, we will give an upper bound for
d(x) which is defined to be the maximal dimension of an
eigenspace of x on V .
The interesting case is when Z (G ) = Z (R) and x ∈ G \ R.
Our tool is the Hall-Higman theorem and its variations.

Theorem (Hall, Higman).

Use the above notations and assumptions. Let x be an element of
G \ R of prime power order q divisible by p, the characteristic of
the field F . Assume that 〈x〉 acts irreducibly on R/Z (R) (where
|R/Z (R)| = r2a). Then there exists a non-negative integer b so
that dim(V ) = ra = (q − 1) + bq, and the Jordan canonical form
of x on V consists of b + 1 Jordan blocks, b of size q and 1 of size
q − 1. In particular, d(x) = dim(CV (x)) = b + 1 = (ra + 1)/q. 21 / 33



On the proof of the first theorem; part 2

Let us say a few words about the proof of the Hall-Higman
theorem. Put x (viewed as a linear transformation of V ) in Jordan
canonical form. Suppose that x has m Jordan blocks of sizes:
a1, . . . , am. We seek to find the ai ’s explicitly. We certainly have
one restriction, namely, dim(V ) = ra =

∑m
i=1 ai . For another one,

let E be the enveloping algebra of the group of linear
transformations R of V . Then E = End(V ) (and so
dimF (E ) = r2a). Hall and Higman proceed to calculate
dimF (CE (x)) in two different ways. On one hand, this is∑m

i=1(2i − 1)ai , while on the other, it is 1 + (r2a − 1)/q, the
number of 〈x〉-orbits of the set R/Z (R). This gives our second
restriction on the ai ’s. It turns out that these two restrictions are
sufficient to determine the m non-negative integers.
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On the proof of the first theorem; part 3
Here are the various lemmas we used which are based on the
argument of the Hall-Higman theorem.

Lemma

Use the above notations and assumptions. Let x be an element of
G \ R so that 〈x〉 is irreducible on R/Z (R). Let the order of x be
m. (The positive integer m divides r2a − 1.) Then
d(x) ≤ (ra + 1)/m.

Lemma

Use the above notations and assumptions. Let x be an element of
G \ R, and let R1, R2 be two maximal abelian subgroups of R
whose intersection is Z (R). Suppose that the Jordan canonical
form of x on R/Z (R) consists of two a-by-a Jordan blocks that are
the same where one leaves R1/Z (R) invariant and the other leaves
R2/Z (R) invariant. Suppose that 〈x〉 is irreducible on both
R1/Z (R) and on R2/Z (R), and x has order m. Then
d(x) ≤ 1 + (ra − 1)/m.
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On the proof of the first theorem; part 4
We used slightly more detailed lemmas in small dimensions (ra)
than the two lemmas below (which concern r -elements x).

Lemma.

Let us use the above notations and assumptions. Let x be an
element of G \ R. Suppose that the Jordan canonical form of x on
R/Z (R) consists of a unique 2a-by-2a Jordan block, and that x
has order a power of r . Then d(x)/ dimF (V ) ≤ ((r + 1)/2r).

Lemma.

Let us use the above notations and assumptions. Let x be an
r -element in G \ R, and let R1, R2 be two maximal abelian
subgroups of R whose intersection is Z (R). Suppose that the
Jordan canonical form of x on R/Z (R) consists of two a-by-a
Jordan blocks that are the same where one leaves R1/Z (R)
invariant and the other leaves R2/Z (R) invariant. Then
d(x)/ dimF (V ) ≤ ((r + 1)/2r).

24 / 33



On the proof of the first theorem; part 5

Putting the lemmas together and using other results we get the
following theorem which is later used in large dimensions (ra). For
small dimensions we need a more detailed analysis.

Theorem.

Let V be a faithful irreducible FG -module where F is an
algebraically closed field of characteristic p > 0 and G is a finite
group. Suppose that G has a normal subgroup R of symplectic
type with |R/Z (R)| = r2a for some prime r and that R acts
absolutely irreducibly on V , dimF (V ) = ra and Op(G ) = 1.
Suppose that R is the unique normal subgroup of G that is
minimal with respect to being non-central. Let x be an arbitrary
non-identity element in G . Then dimF (CV (x)) ≤ ((r + 1)/2r) · ra.
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On the proof of the first theorem; part 6

As said before, for certain small values of ra we need more detailed
information about dimF (CV (x)).
Also, we need to know upper bounds for the numbers of elements
x in G with large fixed point spaces. These upper bounds are
obtained from papers of Wall, Fulman, and Fulman-Guralnick.
Note that G/R can be considered as a subgroup of Sp(2a, r).

Consider the table on the next slide. The star in a row
corresponding to the group Sp(2a, r) stands for the positive integer
|Sp(2a, r)|. Let A and B be two consecutive entries in the row
corresponding to Sp(2a, r). Suppose that A (respectively B) lies in
the column corresponding to the fraction cA (respectively cB).
(Clearly cA < cB .) Now |R|B is an upper bound for the number of
elements x in G with cA < rdim(x) ≤ cB .
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On the proof of the first theorem; part 7

11/25 3/7 1/2 5/9 4/7 3/5 2/3 3/4

Sp(16, 2) * 272

Sp(14, 2) *
Sp(8, 3) * 2 · 324

Sp(12, 2) * 242

Sp(10, 2) *
Sp(6, 3) * 2 · 314

Sp(4, 5) * 1
Sp(8, 2) * 220

Sp(4, 3) * 1441
Sp(6, 2) *
Sp(2, 7) * 1
Sp(2, 5) * 1
Sp(4, 2) * 60
Sp(2, 3) * 9
Sp(2, 2) *
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On the proof of the first theorem; part 8
We recall the following lemma.

Lemma.

k(GV ) =
∑

k(StabG (λ)).

By Brauer’s Permutation Lemma, for any x ∈ G the number of
fixed points |CV (x)| of x on V is equal to the number of
characters λ ∈ Irr(V ) fixed by x . From this, by the Orbit-Counting
Lemma, and by our considerations on the previous slides, we may
give accurate upper bounds for the number of G -orbits n(G ,V ) of
the set Irr(V ).
At first approach we have

n(G ,V ) =
1

|G |
∑
x∈G
|CV (x)| ≤ |V |

|G |
+ |V |(r+1)/2r ,

but for small dimensions we may get better upper bounds using
the table given before.
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On the proof of the first theorem; part 9

Let m be the maximum of k(StabG (λ)) ≤ |StabG (λ)| as λ runs
through the non-trivial characters in Irr(V ).

As (|R|, |V |) = 1, the R-sets V and Irr(V ) are permutation
isomorphic. Hence for any 1 6= λ ∈ Irr(V ) there exists 1 6= v ∈ V
so that StabR(λ) = CR(v). But CR(v) ∩ Z (R) = 1 and so CR(v)
can be embedded into R/Z (R) which is abelian. Hence CR(v) is
an abelian subgroup of R and so |StabR(λ)| = |CR(v)| = r t for
some t ≤ a.

From this we have m ≤ |G |
ra+1 .
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On the proof of the first theorem; part 10

Now we can estimate k(GV ).

k(GV ) ≤ k(G ) + m((|V |/|G |) + |V |(r+1)/2r − 1) ≤

≤ |G |+ (|V |/ra+1) + (|G |/ra+1)(|V |(r+1)/2r − 1).

It is possible to see that this is less than |V | unless a ≤ 8 and
r = 2, a ≤ 4 and r = 3, a ≤ 2 and r = 5, or a = 1 and r = 7.
As said before, for these values of a and r we use a better estimate
for n(G ,V ).
The first instance when we need the constant 588 from the
statement of the first theorem is when a = 6 and r = 2. Here we
have

k(GV ) ≤ |G |+(|V |/27)+249|V |3/4+(|G |/27)|V |1/2 ≤ max{|V |, 588}.
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The second and third theorems
Our second theorem was obtained using the same lemma. This is
the following.

Theorem (Guralnick, M).

Let V be an n-dimensional finite vector space over the field of p
elements where p is a prime. A maximal solvable primitive
subgroup X of GL(n, p) acts naturally on V . Then for any
subgroup G of X we have k(GV ) ≤ |V | unless GV ∼= D8 or S4.

The ideas in the proofs of the first and second theorems yield a
general result on k(GV ) in case the group G has nilpotent
generalized Fitting subgroup and when V is a faithful primitive
irreducible module.

Theorem (Guralnick, M).

Let V be a finite faithful primitive irreducible FG -module for some
group G with Fit∗(G ) = Fit(G ). Then k(GV ) ≤ max{|V |, 21344}.
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The fourth theorem

What can be said about k(G ) in the setting of the non-coprime
k(GV )-problem? Clearly, k(G ) ≤ k(GV ). Interestingly, in case
(|G |, |V |) = 1, the fact that k(G ) ≤ |V | was only derived from the
full solution of the k(GV )-problem. Is it true that k(G ) ≤ |V |
whenever V is a completely reducible module? We make a first
step in answering this question noting that for every normal
subgroup N of most primitive linear groups acting on a module W
we have k(N) < |W |/

√
3.

Theorem (Guralnick, M).

Let V be a finite faithful irreducible FG -module for some finite
field F and finite group G . Suppose that V can be induced from a
primitive irreducible FL-module W for some finite group L with
k(N) < |W |/

√
3 for every normal subgroup N of L/CL(W ). Then

k(G ) < (2/3)|V |.
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Thank you for your attention!
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