On Oliver's p-group conjecture with David Green and László Héthelyi

Nadia Mazza

Lancaster University
June 2011

Oliver's
conjecture
N. Mazza

Introduction
Results
Strengthening

Contents

(1) Introduction

(2) Results
(3) Strengthening

Motivation

Let p be a prime, S a finite p-group and \mathcal{F} a (saturated) fusion system on S.
The Martino-Priddy conjecture:

- Is there a p-local finite group $(\mathcal{L}, \mathcal{F}, S)$? - YES!
- If 'yes', is $(\mathcal{L}, \mathcal{F}, S)$ unique? - . . essentially YES!
(For the concepts, see the survey article by Broto, Levi, Oliver.)
R. Oliver: Suppose p odd. The Martino-Priddy conjecture holds if $J(S) \leq \mathfrak{X}(S)$ for any finite p-group S, where $J(S)$ is the Thompson subgroup, generated by all elementary abelian subgroups of S of maximal order, and $\mathfrak{X}(S)$ is. . . a certain characteristic subgroup of S (later coined Oliver subgroup).

The conjecture

$$
\begin{aligned}
& \text { Conjecture (Oliver) } \\
& \text { Suppose } p \text { odd. Then } J(S) \leq \mathfrak{X}(S) \text { for any finite } p \text {-group } S \text {. } \\
& \text { R. Oliver proved it whenever } S \text { 'occurs' in a fusion system } \mathcal{F} \\
& \text { realised by a finite group by reducing to finite simple groups } \\
& \text { and using the CFSG. The question for exotic fusion systems is } \\
& \text { still unsolved. }
\end{aligned}
$$

Thus, the Martino-Priddy conjecture is true whenever \mathcal{F} is not exotic. But what if \mathcal{F} is exotic?

Moderation

Remark

The condition

$$
J(S) \leq \mathfrak{X}(S) \quad \text { for any finite } p \text {-group } S
$$

is sufficient but not necessary. A milder sufficient condition: $\mathfrak{X}(S)$ contains a universally weakly closed subgroup of S, for any S.
$Q \leq S$ is universally weakly closed in S if for each $S^{\prime} \geq S$ and each fusion system \mathcal{F} on S^{\prime} such that S is strongly \mathcal{F}-closed in S^{\prime}, then Q is weakly \mathcal{F}-closed in S^{\prime}.

DEFINITIONS

Let p be a prime and S a finite p-group.

- $E \leq G$ is elementary abelian (or el. ab. for short) if E is abelian of exponent p. The rank of E is $\operatorname{rk}(E)=\operatorname{dim}_{\mathbb{F}_{p}} E$. The rank of S is $\operatorname{rk}(S)=\max _{E \in \mathcal{E}(S)} \mathrm{rk}(E)$.
- $\mathcal{E}(G)=\{E \leq G \mid E \quad$ el. ab. : $E \neq 1\}$ is the set of non-trivial el. ab. subgroups of G.
- $J(S)=\langle E \in \mathcal{E}(S) \mid \operatorname{rk}(E)=\operatorname{rk}(S)\rangle$.
- $\Omega_{1}(S)=\left\langle x \in S \mid x^{p}=1\right\rangle$
- Commutators: $[x, y ; 1]=[x, y]=x^{-1} y^{-1} x y$, and $[x, y ; n]=[[x, y ; n-1], y]$ for $n \geq 2$.

Oliver subgroup

Henceforth, p is an odd prime and S a finite p-group. $R \leq S$ has a Q-series if $R \unlhd S$ and there exist subgroups $Q_{0}, \ldots, Q_{n} \unlhd S$ with

$$
\begin{gathered}
1=Q_{0} \quad, \quad R=Q_{n} \quad \text { and } \\
{\left[\Omega_{1}\left(C_{S}\left(Q_{i-1}\right)\right), Q_{i} ; p-1\right]=1 \forall 1 \leq i \leq n}
\end{gathered}
$$

The Oliver subgroup of S is the largest subgroup $\mathfrak{X}(S)$ of S which has a Q-series.

Oliver's
conjecture
N. Mazza

Introduction

Strengthening

Preliminaries

(1) $\mathfrak{X}(S)$ is well-defined: if R_{1}, R_{2} have Q-series, then $R_{1} R_{2}$ too.
(2) $\mathfrak{X}(S)$ is centric $\left(C_{S}(\mathfrak{X}(S))=Z(\mathfrak{X}(S))\right)$ and characteristic in S.
(3) For $p=2$ we get $\mathfrak{X}(S)=C_{S}\left(\Omega_{1}(S)\right)$.
(4) If $\mathrm{cl}(S)<p-1$ or if $\operatorname{rk}(Z(\mathfrak{X}(S)))<p$, then $\mathfrak{X}(S)=S$.
(5 $\mathfrak{X}(S) \geq A$ for any normal abelian subgroup A of S.
(6) If $Q \unlhd S$ and $\left[\Omega_{1}(Z(\mathfrak{X}(S))), Q ; p-1\right]=1$ then $Q \leq \mathfrak{X}(S)$.

Oliver's
conjecture
N. Mazza

Introduction
Results
Strengthening

An example

Let $S=C_{p} \backslash C_{p}$.
Recall $|S|=p^{p+1}$ and $\operatorname{cl}(S)=p$.
$\mathfrak{X}(S)=J(S) \cong \underbrace{C_{p} \times \cdots \times C_{p}}_{p \text { factors }}$ is the base subgroup of S.
Thus S is the 'smallest' case where $\mathfrak{X}(S)<S$.

Oliver's
conjecture
N. Mazza

Introduction

Strengthening

Reformulation of Oliver's conjecture

Let (PS) be the property: Let G be a non-trivial finite p-group and V a (finitely generated) faithful $\mathbb{F}_{p} G$-module. The restriction $\operatorname{Res}_{\langle z\rangle}^{G}(V)$ has a non-trivial projective direct summand for every $1 \neq z \in \Omega_{1}(Z(G))$.

Theorem (Green, Héthelyi, Lilienthal)
Oliver's conjecture is equivalent to: 'any non-trivial finite p-group G has no F-module satisfying (PS).

Oliver's conjecture
N. Mazza

Introduction

F-MODULES AND OFFENDERS

Let G, V be as in the above theorem. For $H \leq G$ put

$$
j_{H}(V)=\frac{|H||C V(H)|}{|V|} . \quad \text { Note that } j_{1}(V)=1
$$

H is quadratic (on V) if $[V, H, H]=1$.
$E \in \mathcal{E}(G)$ is an offender (for V) if $j_{E}(V) \geq 1 . E$ is a best offender (for V) if $j_{F}(V) \leq j_{E}(V)$ for all $1 \leq F \leq E . V$ is an F-module (for G) if V has an offender. F-module stands for failure of Thompson's factorisation. (See [GLS2])

Consequence of Timmesfeld replacement theorem
V is an F-module iff V has a quadratic best offender.

Oliver's
N. Mazza

Introduction

Underlying the recast

The only case to consider: $\mathfrak{X}(S)<S$, i.e. $\quad G:=S / \mathfrak{X}(S)>1$. If $J(S) \leq \mathfrak{X}(S)$ iff each $E \in \mathcal{E}(S)$ of maximal order lies in $\mathfrak{X}(S)$. The reformulation translates this condition in terms of the faithful representations of G over \mathbb{F}_{p}.
Let V be a faithful $\mathbb{F}_{p} G$-module. We want to show that if V satisfies (PS), then V is not an F-module, i.e. V has no quadratic best offender.

Remark

Any non-trivial p-group G arises as $S / \mathfrak{X}(S)$ for some S. Indeed, take any faithful $\mathbb{F}_{p} G$-module V and let $S=V \rtimes G$. Then $V=\mathfrak{X}(S)$.

Outcome

Theorem (Green, Héthelyi, M.)

Oliver's conjecture holds for any finite p-group S such that $G=S / \mathfrak{X}(S)$ satisfies one of the following conditions.
(1) $\mathrm{cl}(G) \leq 4$.
(2) G is metabelian.
(3) $\mathrm{rk}(G) \leq p$.

Corollary

Oliver's conjecture holds for any finite p-group S such that $G=S / \mathfrak{X}(S)$ satisfies one of the following conditions.
(1) G has maximal nilpotence class.
(2) G is a regular 3-group.

Stepping stones

Results by Chermak, Delgado, Meierfrankenfeld and Stellmacher enable us to show:

Theorem

Let G be a non-trivial finite p-group and V a faithful $\mathbb{F}_{p} G$-module.
(1) If $\Omega_{1}(Z(G))$ has no quadratic elements, then

- if $A \unlhd G$ abelian, then A does not contain any offender.
- If $E \in \mathcal{E}(G)$ is an offender, then $\left[G^{\prime}, E\right] \neq 1$.
(2) If $\Omega_{1}(Z(G))$ has no quadratic elements and either $\mathrm{cl}(G) \leq 4$ or G is metabelian, then V cannot be an F-module.

3 If V satisfies (PS) and $\operatorname{rk}(G) \leq p$, then V cannot be an F-module.

A 'Quadratic' view

As a consequence of Timmesfeld's theorem, all 'reduces' to the analysis of the action of quadratic elements and subgroups on faithful $\mathbb{F}_{p} G$-modules. Hence,
$R \unlhd S$ has a Y-series if if $R \unlhd S$ and there exist subgroups $Y_{0}, \ldots, Y_{n} \unlhd S$ with

$$
\begin{gathered}
1=Y_{0} \quad, \quad R=Y_{n} \quad \text { and } \\
{\left[\Omega_{1}\left(C_{S}\left(Y_{i-1}\right)\right), Y_{i} ; 2\right]=1 \forall 1 \leq i \leq n .}
\end{gathered}
$$

Let $\mathcal{Y}(S)$ be the largest subgroup of S which has a Y-series.

Comparison

As for $\mathfrak{X}(S)$, the subgroup $\mathcal{Y}(S)$ is

- well-defined and characteristic in S;
- any finite p-group G arises as $S / \mathcal{Y}(S)$ for some S;
- $\mathcal{Y}(S)$ contains every abelian normal subgroup of S, and thus $\mathcal{Y}(S)$ is centric in S.
If $p=2$, then $\mathcal{Y}(S)=S$ and if $p=3$ then $\mathcal{Y}(S)=\mathfrak{X}(S)$.
Oliver's conjecture holds for S whenever the conditions in the theorem below are satisfied.

Theorem

Let p be an odd prime and G, S finite p-groups with $G=S / \mathcal{Y}(S)$. Then $J(S) \leq \mathcal{Y}(S)$ if and only for every F-module V there are quadratic elements in $\Omega_{1}(Z(G))$.

Improvements

Theorem

Suppose that G satisfies $\Omega_{1}(Z(\mathcal{Y}(G)))=\Omega_{1}(Z(G))$ (this holds if $\mathcal{Y}(G)=G$ and hence if $G=\langle A \unlhd G| A$ abelian \rangle). Then for every F-module V for G there are quadratic elements in $\Omega_{1}(Z(G))$. In particular, Oliver's conjecture holds.

Theorem

Let P be a Sylow p-subgroup of some general linear group $G L_{n}(q)$. Then

- $J(P) \leq \mathcal{Y}(P)$
- for every F-module V there are quadratic elements in $\Omega_{1}(Z(P))$.

A LAST WORD

This last result implies that Oliver's conjecture holds for every finite p-group S such that either S, or the factor group $G=S / \mathcal{Y}(S)$, is a Sylow p-subgroup of some $\mathrm{GL}_{n}(q)$, including the case of the Sylow p-subgroups of the symmetric groups. Recall that these are either generated by their abelian normal subgroups (defining characteristic), or direct products of iterated wreath products of cyclic p-groups (non-defining characteristic).

