conjecture
Introduction
Results

Strengthening

On Oliver's p-group conjecture with David Green and László Héthelyi

Nadia Mazza

Lancaster University

June 2011

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Contents

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Oliver's conjecture

Introduction Results Strengthening

3 Strengthening

MOTIVATION

conjecture N. Mazza ntroduction

Oliver's

Results Strengthening Let p be a prime, S a finite p-group and \mathcal{F} a (saturated) fusion system on S.

The Martino-Priddy conjecture:

- ▶ Is there a *p*-local finite group $(\mathcal{L}, \mathcal{F}, S)$? YES!
- ▶ If 'yes', is $(\mathcal{L}, \mathcal{F}, S)$ unique? ... essentially YES!

(For the concepts, see the survey article by Broto, Levi, Oliver.)

R. Oliver: Suppose p odd. The Martino-Priddy conjecture holds if $J(S) \leq \mathfrak{X}(S)$ for any finite p-group S, where J(S) is the *Thompson subgroup*, generated by all elementary abelian subgroups of S of maximal order, and $\mathfrak{X}(S)$ is... a certain characteristic subgroup of S (later coined *Oliver subgroup*).

The conjecture

Oliver's conjecture

Results <u>Str</u>engthening

Conjecture (Oliver)

Suppose p odd. Then $J(S) \leq \mathfrak{X}(S)$ for any finite p-group S.

R. Oliver proved it whenever S 'occurs' in a fusion system \mathcal{F} realised by a finite group by reducing to finite simple groups and using the CFSG. The question for *exotic* fusion systems is still unsolved.

Thus, the Martino-Priddy conjecture is true whenever \mathcal{F} is not exotic. But what if \mathcal{F} is exotic?

MODERATION

Remark

The condition

Oliver's conjecture

Results

Strengthening

 $J(S) \leq \mathfrak{X}(S)$ for any finite *p*-group *S*

is sufficient but not necessary. A milder sufficient condition: $\mathfrak{X}(S)$ contains a *universally weakly closed* subgroup of S, for any S.

 $Q \leq S$ is universally weakly closed in S if for each $S' \geq S$ and each fusion system \mathcal{F} on S' such that S is strongly \mathcal{F} -closed in S', then Q is weakly \mathcal{F} -closed in S'.

DEFINITIONS

Oliver's conjecture

Introduction

Results

Strengthening

Let p be a prime and S a finite p-group.

- E ≤ G is elementary abelian (or el. ab. for short) if E is abelian of exponent p. The rank of E is rk(E) = dim_{Fp} E. The rank of S is rk(S) = max_{E∈E(S)} rk(E).
- *E*(*G*) = {*E* ≤ *G* | *E* el. ab. : *E* ≠ 1} is the set of non-trivial el. ab. subgroups of *G*.
- ► $J(S) = \langle E \in \mathcal{E}(S) | \operatorname{rk}(E) = \operatorname{rk}(S) \rangle.$
- $\Omega_1(S) = \langle x \in S \mid x^p = 1 \rangle$
- Commutators: $[x, y; 1] = [x, y] = x^{-1}y^{-1}xy$, and [x, y; n] = [[x, y; n-1], y] for $n \ge 2$.

OLIVER SUBGROUP

Oliver's conjecture

N. Mazza

Introduction

Results Strengthening Henceforth, p is an odd prime and S a finite p-group. $R \leq S$ has a Q-series if $R \leq S$ and there exist subgroups $Q_0, \ldots, Q_n \leq S$ with

$$1= Q_0$$
 , $R= Q_n$ and

$$[\Omega_1(C_S(Q_{i-1})), Q_i; p-1] = 1 \ \forall \ 1 \le i \le n.$$

The *Oliver subgroup* of S is the largest subgroup $\mathfrak{X}(S)$ of S which has a Q-series.

Preliminaries

N. Mazza

Oliver's conjecture

- Results
- Strengthening
- $\mathfrak{X}(S)$ is well-defined: if R_1, R_2 have Q-series, then R_1R_2 too.
- **2** $\mathfrak{X}(S)$ is centric ($C_S(\mathfrak{X}(S)) = Z(\mathfrak{X}(S))$) and characteristic in *S*.
- **6** For p = 2 we get $\mathfrak{X}(S) = C_S(\Omega_1(S))$.
- If cl(S) < p-1 or if $rk(Z(\mathfrak{X}(S))) < p$, then $\mathfrak{X}(S) = S$.

- $\mathfrak{X}(S) \ge A$ for any normal abelian subgroup A of S.
- If $Q \leq S$ and $[\Omega_1(Z(\mathfrak{X}(S))), Q; p-1] = 1$ then $Q \leq \mathfrak{X}(S)$.

AN EXAMPLE

Oliver's conjecture

N. Mazza

Introduction

Results

Strengthening

Let
$$S = C_p \wr C_p$$
.
Recall $|S| = p^{p+1}$ and $cl(S) = p$.
 $\mathfrak{X}(S) = J(S) \cong \underbrace{C_p \times \cdots \times C_p}_{p \text{ factors}}$ is the base subgroup of S .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Thus S is the 'smallest' case where $\mathfrak{X}(S) < S$.

REFORMULATION OF OLIVER'S CONJECTURE

Oliver's conjecture

N. Mazza

Introduction

Results

Strengthening

Let (PS) be the property: Let G be a non-trivial finite p-group and V a (finitely generated) faithful \mathbb{F}_pG -module. The restriction $\operatorname{Res}_{\langle Z \rangle}^G(V)$ has a non-trivial projective direct summand for every $1 \neq z \in \Omega_1(Z(G))$.

Theorem (Green, Héthelyi, Lilienthal)

Oliver's conjecture is equivalent to: 'any non-trivial finite p-group G has no F-module satisfying (PS).'

F-MODULES AND OFFENDERS

Let G, V be as in the above theorem. For $H \le G$ put $j_H(V) = \frac{|H| |CV(H)|}{|V|}$. Note that $j_1(V) = 1$.

Oliver's conjecture

Introduction Results

Strengthening

H is quadratic (on *V*) if [V, H, H] = 1. $E \in \mathcal{E}(G)$ is an offender (for *V*) if $j_E(V) \ge 1$. *E* is a best offender (for *V*) if $j_F(V) \le j_E(V)$ for all $1 \le F \le E$. *V* is an *F*-module (for *G*) if *V* has an offender. *F*-module stands for failure of Thompson's factorisation. (See [GLS2])

Consequence of Timmesfeld replacement theorem V is an F-module iff V has a quadratic best offender.

UNDERLYING THE RECAST

Oliver's conjecture

N. Mazza

Introduction

Results

Strengthening

The only case to consider: $\mathfrak{X}(S) < S$, i.e. $G := S/\mathfrak{X}(S) > 1$. If $J(S) \leq \mathfrak{X}(S)$ iff each $E \in \mathcal{E}(S)$ of maximal order lies in $\mathfrak{X}(S)$. The reformulation translates this condition in terms of the faithful representations of G over \mathbb{F}_p . Let V be a faithful \mathbb{F}_pG -module. We want to show that if V satisfies (PS), then V is not an F-module, i.e. V has no quadratic best offender.

Remark

Any non-trivial *p*-group *G* arises as $S/\mathfrak{X}(S)$ for some *S*. Indeed, take any faithful \mathbb{F}_pG -module *V* and let $S = V \rtimes G$. Then $V = \mathfrak{X}(S)$.

Outcome

Theorem (Green, Héthelyi, M.)

Introduction

Oliver's <u>co</u>njecture

Results

Strengthening

Oliver's conjecture holds for any finite p-group S such that G = S/𝔅(S) satisfies one of the following conditions.
1 cl(G) ≤ 4.
2 G is metabelian.
3 rk(G) ≤ p.

Corollary

Oliver's conjecture holds for any finite p-group S such that $G = S/\mathfrak{X}(S)$ satisfies one of the following conditions.

1 *G* has maximal nilpotence class.

2 *G* is a regular 3-group.

Stepping stones

Oliver's conjecture

N. Mazza

Introduction

Results

Strengthening

Results by Chermak, Delgado, Meierfrankenfeld and Stellmacher enable us to show:

Theorem

Let G be a non-trivial finite p-group and V a faithful \mathbb{F}_p G-module.

- If $\Omega_1(Z(G))$ has no quadratic elements, then
 - if $A \leq G$ abelian, then A does not contain any offender.
 - If $E \in \mathcal{E}(G)$ is an offender, then $[G', E] \neq 1$.
- If Ω₁(Z(G)) has no quadratic elements and either cl(G) ≤ 4 or G is metabelian, then V cannot be an F-module.
- If V satisfies (PS) and rk(G) ≤ p, then V cannot be an F-module.

A 'QUADRATIC' VIEW

Introduction Results

Oliver's conjecture

Strengthening

As a consequence of Timmesfeld's theorem, all 'reduces' to the analysis of the action of *quadratic* elements and subgroups on faithful \mathbb{F}_pG -modules. Hence, $R \leq S$ has a *Y*-series if if $R \leq S$ and there exist subgroups

 $Y_0, \ldots, Y_n \trianglelefteq S$ with

 $1=Y_0$, $R=Y_n$ and

 $[\Omega_1(C_S(Y_{i-1})), Y_i; 2] = 1 \ \forall \ 1 \le i \le n.$

Let $\mathcal{Y}(S)$ be the largest subgroup of S which has a Y-series.

Comparison

- As for $\mathfrak{X}(S)$, the subgroup $\mathcal{Y}(S)$ is
 - well-defined and characteristic in S;
 - any finite *p*-group *G* arises as $S/\mathcal{Y}(S)$ for some *S*;
 - → *Y*(*S*) contains every abelian normal subgroup of *S*, and thus *Y*(*S*) is centric in *S*.

If p = 2, then $\mathcal{Y}(S) = S$ and if p = 3 then $\mathcal{Y}(S) = \mathfrak{X}(S)$. Oliver's conjecture holds for S whenever the conditions in the theorem below are satisfied.

Theorem

Let p be an odd prime and G, S finite p-groups with $G = S/\mathcal{Y}(S)$. Then $J(S) \leq \mathcal{Y}(S)$ if and only for every F-module V there are quadratic elements in $\Omega_1(Z(G))$.

Oliver's conjecture

N. Mazza

Introduction

Results

Strengthening

Improvements

Theorem

Introduction

Oliver's conjecture

Results

Strengthening

Suppose that G satisfies $\Omega_1(Z(\mathcal{Y}(G))) = \Omega_1(Z(G))$ (this holds if $\mathcal{Y}(G) = G$ and hence if $G = \langle A \trianglelefteq G \mid A \text{ abelian } \rangle$). Then for every F-module V for G there are quadratic elements in $\Omega_1(Z(G))$. In particular, Oliver's conjecture holds.

Theorem

Let P be a Sylow p-subgroup of some general linear group $GL_n(q)$. Then

- ► $J(P) \leq \mathcal{Y}(P)$
- for every *F*-module *V* there are quadratic elements in $\Omega_1(Z(P))$.

A LAST WORD

Oliver's conjecture N. Mazza

Introduction

Results

Strengthening

This last result implies that Oliver's conjecture holds for every finite *p*-group *S* such that either *S*, or the factor group $G = S/\mathcal{Y}(S)$, is a Sylow *p*-subgroup of some $GL_n(q)$, including the case of the Sylow *p*-subgroups of the symmetric groups. Recall that these are either generated by their abelian normal subgroups (defining characteristic), or direct products of iterated wreath products of cyclic *p*-groups (non-defining characteristic).