N. Mazza

The poset Q&A

Bounding rk(G)

Carlson's conjecture

Corollaries

Poset of elementary abelian subgroups of finite *p*-groups *partly joint with George Glauberman*

Nadia Mazza

Lancaster University

June 2011

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

CONTENTS

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

El. ab. Poset

The poset Q&A

Bounding

Carlson's conjecture

Corollaries

3 Carlson's conjecture

The basics

El. ab. Poset

N. Mazza

The poset Q&A

Bounding rk(G)

Carlson's conjecture

Corollaries

- ▶ *p* a prime;
- ► G a finite p-group.
- ► E ≤ G is elementary abelian (or el. ab. for short) if E is abelian of exponent p. The rank of E is rk(E) = dim_{Fn} E.
- *E*(*G*) = {*E* ≤ *G* | *E* el. ab. : rk(*E*) ≥ 2} is the *poset* of el. ab. subgroups of *G* of rank at least 2. The order is the *inclusion* ⊆.
- ▶ $E, F \in \mathcal{E}(G)$ are *connected* if $\exists E_1, ..., E_t \in \mathcal{E}(G)$ with

 $E=E_1$, $F=E_t$ and

 $E_i \subseteq E_{i+1}$ or $E_{i+1} \subseteq E_i$ for all $1 \le i$.

In this case, write $E \sim F$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

EXAMPLES

- Bounding rk(G)
- Carlson's conjecture

Q&A

El. ab. Poset

Corollaries

- $G \ \operatorname{cyclic} \Rightarrow \ \mathcal{E}(G) = \emptyset.$
- **2** G abelian $\Rightarrow \mathcal{E}(G)$ is connected.
- p odd and $G = p_+^{1+2} \Rightarrow \mathcal{E}(G)$ is a set of p+1 points.
- p odd and G = C_p ≥ C_p ⇒ E(G) is a big connected component disjoint union with p^{p-2} isolated points, all G conjugate.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

EL ab. Poset N. Mazza The poset Q&A Bounding rk(G) Carlson's Corollaries

and

A component of $\mathcal{E}(G) = G$ -conjugacy class of connected component of $\mathcal{E}(G)$. $\#\mathcal{E}(G) =$ number of components of $\mathcal{E}(G)$.

Key lemma

El. ab. Poset

N. Mazza

The poset Q&A

Bounding rk(G)

Carlson's conjecture

Corollaries

 $\mathcal{E}(G)$ is the disjoint union of a *big component* and isolated vertices: Suppose G is not cyclic. Then,

- $\exists E_0 \in \mathcal{E}(G)$ with $C_p^2 \cong E_0 \trianglelefteq G$;
- $E \in \mathcal{E}(G)$ with $\mathsf{rk}(E) > 2 \implies E \sim E_0$.

In particular,

 $\#\mathcal{E}(G) > 1 \quad \Leftrightarrow \quad G \text{ has maximal el. al. subgroups of rank 2.}$

Hunch & ...? Most finite *p*-groups *G* have $\#\mathcal{E}(G) = 1$. What can be said of *G* if $\#\mathcal{E}(G) > 1$?

KNOWN FACTS

El. ab. Poset

N. Mazza

The poset Q&A

Bounding rk(G)

Carlson's conjecture

Corollaries

Suppose $\#\mathcal{E}(G) > 1$ and let $E, E_0 \in \mathcal{E}(G)$ with E maximal el. ab. of rank 2 and $E_0 \leq G$ also of rank 2. Then:

• Z(G) is cyclic.

2
$$C_G(E) = E * L$$
 with L cyclic.

- $N_G(E) = EE_0 * L$ with $EE_0 \cong p_+^{1+2}$. Thus $|N_G(E) : C_G(E)| = p$.
- If $E \not \leq G$ then $cl(G) = \log_p \left(\frac{|G|}{|L|}\right)$. Furthermore, E_0 char G is the unique el. ab. of rank 2 normal in G.
- If $E \trianglelefteq G$ then $G = EE_0 * L$. In particular, rk(G) = 2 and $\#\mathcal{E}(G) = p + 1$.

N. Mazza

The poset Q&A

Bounding rk(G)

Carlson's conjecture

Corollaries

Two questions and answers

Let G be a finite p-group, p odd. Is there n such that: • if rk(G) > n then $\#\mathcal{E}(G) = 1$?

• if
$$rk(G) > n$$
, then $\#\mathcal{E}(G) = 1$
• $\#\mathcal{E}(G) < n$?

Answers

For any odd prime p and any finite p-group G: 1 if rk(G) > p, then $\#\mathcal{E}(G) = 1$. 2 $\#\mathcal{E}(G) .$

Th answer to question 1 has been obtained in collaboration with G. Glauberman.

BOUNDING rk(G)

El. ab. Poset

N. Mazza

The poset Q&A

Bounding rk(G)

Carlson's conjecture

Corollaries

Suppose that G is a finite p-group of rank > 2. Linear algebra note: if $V \leq G$ is el. ab. and rk(V) > p then $\#\mathcal{E}(G) = 1$. Improvement using Lazard correspondence: if $V \leq G$ is of exponent p, cl(V) < p, and $|V| > p^p$ then $\#\mathcal{E}(G) = 1$.

Group theory notes:

- if p = 3 and rk(G) > 3 then #E(G) = 1.
 (Jonah-Konvisser)
- ③ if $p \ge 5$ and $A \in \mathcal{E}(G)$ with $\operatorname{rk}(A) = n$ then $\exists B \in \mathcal{E}(G)$ with $\operatorname{rk}(B) = n$ and $B \le \langle B^G \rangle$. (Alperin-Glauberman)

N. Mazza

The poset Q&A

Bounding rk(G)

Carlson's conjecture

Corollaries

About the proof

We want to show that if p > 3, if $\#\mathcal{E}(G) > 1$, and if E is a non-normal maximal el. ab. subgroup of G, then $\mathsf{rk}(G) \leq p$.

Strategy

Proceed by contradiction: Suppose $\exists A \in \mathcal{E}(G)$ with rk(A) = p + 1 and $A \triangleleft \langle A^G \rangle =: N$. Choose normal subgroups of G of class < p and exponent p. Thus, by 'Lazard' remark, these have order $\leq p^p$; namely:

 $M = \Omega_1(Z_{p-1}(N)) \quad Y = \Omega_1(Z_2(N)) \quad W = \Omega_1(Z(N))$

About the proof

El. ab. Poset

N. Mazza

The poset Q&A

Bounding rk(G)

Carlson's conjecture

Corollaries

Either $Y \leq A$ or $Y \nleq A$. If $Y \leq A$ then $Y \leq Z(N)$ (as any normal abelian subgroup of G contained in A) $\Rightarrow A \cap Z_2(N) = A \cap Z(N) \Rightarrow A \leq M$. Contradiction: $|A| = p^{p+1} > |M|$. If $Y \nleq A$, then (... exercise...) $A \cap Z_2(N) = A \cap Z_3(N) \Rightarrow A \leq M$. Contradiction: $|A| = p^{p+1} > |M|$.

Remark

For p = 2, there is a 2-group of rank 4 with a non-normal maximal Klein four group. See article [GM2010] for details.

Köszönöm Laci!

El. ab. Poset

N. Mazza

The poset Q&A

Bounding rk(G)

Carlson's conjecture

Corollaries

Let G be a finite p-group. A subgroup A of G is soft if $A = C_G(A)$ and $|N_G(A) : A| = p$. A is deep soft if A is soft and $A \not \leq G$, i.e. |G : A| > p.

L. Héthelyi proved:

Theorem

- Every soft subgroup of G is contained in a unique maximal subgroup.
- Any two soft subgroups contained in the same maximal subgroup of G are conjugate.
- Let A be a deep soft subgroup of G, and put H = G'Z(N_G(A)). Then, G/H ≅ C_p × C_p and H is independent of A.

Un jeu d'enfant

El. ab. Poset

N. Mazza

The poset Q&A

Bounding rk(G)

Carlson's conjecture

Corollaries

- We want to prove that $\#\mathcal{E}(G) < p+2$.
- ► By 'Known Facts', we may assume that G contains a non-normal maximal el. ab. subgroup E of rank 2. Hence A = C_G(E) = E * L is deep soft in G and L is cyclic.
- ► Héthelyi's theorem ⇒ there are at most p + 1 maximal subgroups of G which may contain soft subgroups, each of these may contain at most one conjugacy class of soft subgroups, i.e. an 'isolated component' of E(G).
- ► $H < C_G(E_0) < G$ for the unique $E_0 \in \mathcal{E}(G)$ with $E_0 \triangleleft G$ and $\mathsf{rk}(E_0) = 2$.
- ► Add the numbers to get the maximal number of components: 1 big and p isolated. ⇒ QED

N. Mazza

The poset Q&A

Bounding rk(G)

Carlson's conjecture

Corollaries

CLASS-BREADTH CONJECTURE

Let G be a finite p-group and $x \in G$. The breadth of x is

$$b(x) = \log_p |G : C_G(x)|$$
. Thus $b(G) = \max_{x \in G} b(x)$

is the *breadth of G*.

Conjecture (Leedham-Green, Neumann, Wiegold,1969) Let G be a finite p-group. Then $cl(G) \le b(G) + 1$.

The conjecture fails for p = 2 but is still an open question for p odd. In view of our results:

Corollary

イロト 不得下 イヨト イヨト

If G is a finite p-group (p odd) which has a non-normal maximal el. ab. subgroup of rank 2, then $cl(G) \le b(G) + 1$.

N. Mazza

The poset Q&A

Bounding rk(G)

Carlson's conjecture

Corollaries

ENDOTRIVIAL MODULES

Let $k = \overline{k}$ be a field of characteristic p and G a finite group of order divisible by p. A finitely generated kG-module M is *endotrivial* if End_k $M \cong k$ in the stable module category stmod(kG). The group of endotrivial kG-modules is

 $T(G) = \{$ iso. classes of endotrivial kG-modules in stmod $(kG)\}$

Known: T(G) is a finitely generated abelian group. Its torsion-free rank is $\#\mathcal{E}(G)$, i.e. the *G*-conjugacy classes of connected components of $\mathcal{E}(P)$ for a Sylow *p*-subgroup *P* of *G*.

Corollary

For any odd p and finite group G the group T(G) has torsion-free rank at most p + 1. Furthermore, if the p-rank of G is greater than p, then T(G) has torsion-free rank 1.