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Two basic ways to input a group:
1) generators–relators
G = 〈a,b | a2 = b5 = 1,ba = b−1〉

2) “concrete” representation, with generating
permutations or matrices (over finite fields)
G = 〈(1,5,2,6), (1,2)(3,4)(5,6)〉

Theorem (Cayley)
Every finite abstract group can be described as a finitely
presented group, and as a permutation group or matrix
group.

Representations given by Cayley’s theorem (Cayley
tables, regular representations) are useless from a
computational point of view. We want to work with groups
that are too big to list.

Which representation to choose?
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Finitely presented groups
Finitely presented groups are tough customers.
Given a presentation G = 〈X | R〉, the fundamental
question is the solution of the word problem: does a given
word w in X represent the identity of G?

Theorem (Novikov, Boone)
The word problem is undecidable (no recursive algorithm
to solve).

To handle a finitely presented group, we usually try to
construct a permutation representation and switch to
permutation group methods.
One notable exception: Finite solvable groups have
polycyclic presentations and the word problem is
solvable. Many further algorithms, including
automorphism group computations. In the special case of
p-groups, more efficient versions.
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Permutation and matrix groups

Decidability is not a problem: everything is finite (provided
the matrix groups are defined over finite fields).

For permutation groups, large library of efficient nearly
linear-time algorithms, including many subroutines
needed for automorphism group computations. However,
gap> AutomorphismGroup(G);
does not use the best theoretical algorithm.

Matrix group algorithms are less developed. So far, there
is no practical attempt to compute automorphism groups,
but the same algorithm as in the permutation group case
works, provided we have subroutines for certain tasks, as
in the previous paragraph.
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Automorphism group computation is the most complex
permutation group algorithm so far. Along the way, we
have to switch to matrix representations, use polycyclic
representation methods for certain factor groups.
To describe the algorithm from scratch would require a
semester-long course; necessarily, we have to handwave
a lot.

We encounter many interesting algorithmic and
mathematical problems that are useful for a broader
spectrum of algorithmic tasks.
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Automorphism groups

Example

G = 〈(1,2), (3,4), (5,6)〉 ∼= Z3
2, Aut(G) ∼= GL(3,2).

Computations lead out from the input permutation
representation.

G = 〈(1,2)(3,4)(5,6)(7,8), (1,3)(2,4)(5,7)(6,8),

(1,5)(2,6)(3,7)(4,8)〉 ∼= Z 3
2

(“useless” regular representation).

Aut(G) ∼= NS8(G)/CS8(G) computable in the input
representation, but computing the normalizer in Sn of
a regular subgroup is a notoriosly difficult case of
normalizer computations.
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We describe automorphisms by giving the images of
generators of G.
G = 〈X 〉 = 〈x1, . . . , xk 〉,
Aut(G) = 〈ϕ1, . . . , ϕm〉,
ϕi : [x1, . . . , xk ] 7→ [yi,1, . . . , yi,k ] for some yi,j ∈ G.

To find the ϕi -image of an arbitrary g ∈ G, we have to
solve the constructive membership problem in G: express
g in terms of X (as a straight-line program). Readily done
in permutation groups and polycyclic groups; recent
major progress in matrix groups.

To find the image of g ∈ G under an arbitrary ϕ ∈ Aut(G),
solve the constructive membership problem in Aut(G),
combine with method in previous paragraph.



Automorphism
groups

Ákos Seress

Introduction

Permutation
groups
Orbits

The orbit algorithm

Computing the stabilizer

Stabilizer Chains
Base and SGS

Order

Membership test

Computing StabChains

Nearly linear-time
Small-base groups

Black-box groups

Composition
series
Primitive groups

The O’Nan–Scott theorem

Large-base primitive groups

The algorithm

Some
characteristic
subgroups
Construction of Rad(G)

Aut(G/Rad(G))

Polycyclic Groups

Finite p-groups

Algorithms for
p-groups

Automorphism
group of p-groups

Straigth-line programs

straight-line program from Y to g

sequence of expressions w1, . . . ,wm
wi : symbol for some y ∈ Y or
wi = (wj ,wk ) for some j , k < i or
wi = (wj ,−1) for some j < i

Evaluation:
eval(wj ,wk ) = eval(wj)eval(wk )
eval(wj ,−1) = eval(wj)

−1

eval(wm) = g

Y = {y}, g = y1024

w1 = y , w2 = (w1,w1), w3 = (w2,w2), . . . ,w11 =
(w10,w10)
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Group actions and orbits
Let G be a group acting from the right on a set X :

A : X ×G→ X (“action function”)
with A(x ,1) = x and A(x ,gh) = A(A(x ,g),h) for all
x ∈ X and all g,h ∈ G.

Notation
Write xg for A(x ,g) and xgh for A(x ,gh) = A(A(x ,g),h).
Write xG for {xg | g ∈ G} and call A transitive if xG = X .
Call xG the orbit of x under G.
Call StabG(x) := {g ∈ G | xg = x} ≤ G the stabilizer.
Write gH for {gh | h ∈ H} and Hg for {hg | h ∈ H}.

Example
For H < G,

H acts on G by A : G × H → G, (g,h) 7→ gh .
G acts on the right cosets X := {Hg | g ∈ G}
by A : X ×G→ X , (Hg,g′) 7→ Hgg′.
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Orbit-Stabilizer Theorem

Theorem (Orbit-Stabilizer)
Let G act transitively on X and let S := StabG(x) for
some x ∈ X. Then |G| = |X | · |S| and

{Sg | g ∈ G} −→ X
Sg 7−→ xg

is well-defined and is a bijection.

Proof:
If Sg = Sg′ then g′ = sg for some s ∈ S, thus
xg = xsg = xg′. So F is well-defined.
F is surjective, because the image is the orbit xG.
If xg = xg′, then gg′−1 fixes x and thus lies in S.
Thus g′ = sg for some s ∈ S and F is injective.
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Algorithm: ENUMERATEORBIT

Input: G = 〈g1, . . . ,gk 〉 acting on X and x ∈ X .
1 Assign list L := [x ] and i := 1
2 While i ≤ Length(L) do
3 For j in [1,2, . . . , k ] do
4 Assign y := L[i]gj

5 If y /∈ L then
6 Append y to the end of L
7 Assign i := i + 1

Fact (Correctness and termination)
If this terminates, then L contains the complete orbit xG.
If xG is finite, then the algorithm terminates.

Comment (Performance)
Crucial: Check efficiently if y /∈ L.
=⇒ use hashing technique
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Breadth first search — Schreier tree

G = 〈a, b, c〉
c

b
a

x

xa xb xc

xab xac

b c

xca

a

xccxcb

cb

xaba xabb xcba

a b a

Tree is discovered row by row.

For each point we get a word in the generators.

These words are shortest possible!
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Computing the stabilizer

Assume we run the standard orbit algorithm for X = xG.

Fact (Schreier generators)
Whenever we apply a generator g to a point xw (w a
word in the generators) and find that y := xwg is already
known, it must be of the form xw ′ for a known word w ′.
Then wgw ′−1 fixes x and thus is contained in StabG(x).

Theorem (Schreier’s Lemma)

All these wgw ′−1 together generate StabG(x).

Problem
There can be many such Schreier generators.
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The Orbit-Stabilizer-Algorithm

Algorithm: ENUMERATEORBITWITHSTABILIZER

Input: G = 〈g1, . . . ,gk 〉 acting on X and x ∈ X .
1 Assign list L := [x ] and i := 1 and S := {1}
2 While i ≤ Length(L) do
3 For j in [1,2, . . . , k ] do
4 Assign y := L[i]gj

5 If y /∈ L then
6 Append y to the end of L
7 else
8 Assign S :=

〈
S,wgjw ′−1〉

9 Assign i := i + 1
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Permutation Groups

Notation: Let Σn be the group of all permutations of
[n] := {1,2, . . . ,n}.

We use cycle notation:

(1,3,4)(2,5) maps 1 7→ 3 7→ 4 7→ 1 and 2 7→ 5 7→ 2.

We concatenate left before right:

(1,2)(2,3) = (1,3,2).
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Orbits and stabilizer cosets

Theorem (Orbit-Stabilizer)
Let G act on X and let S := StabG(x) for some x ∈ X.
Let S \G := {Sg | g ∈ G}. Then |G| = |xG| · |S| and

F : S \G −→ xG
Sg 7−→ xg

is well-defined and is a bijection.

Fact
We can read off in which S-coset g lies by looking at xg.
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Bases and Strong Generating Sets

(C. Sims, late 1960’s)
Let G = 〈T 〉 ≤ Σn, that is, G acts on [n] = {1,2, . . . ,n}.

Definition (Base)
X = (x1, . . . , xk ) ⊂ [n] is base for G:
pointwise stabilizer GX = 1
G = G[1] ≥ G[2] ≥ · · · ≥ G[k+1] = 1 point stabilizer chain
G[i] = G(x1,...,xi−1)

Definition (Strong Generating Set)
S is strong generating set (SGS):
S is a generating set for G and for
Si := G[i] ∩ S,
G[i] = 〈Si〉
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Example of base and SGS

G = 〈(1,5,2,6), (1,2)(3,4)(5,6)〉
X = (1,3)
G > G1 > G13 = 1

T = {(1,5,2,6), (1,2)(3,4)(5,6)} is not an SGS
T ∩G1 = ∅, does not generate G1 6= 1.

S := {(1,5,2,6), (1,2)(3,4)(5,6), (3,4)} is an SGS
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The full data structure: base, SGS,
transversals

G = 〈T 〉 ≤ Σn, with

base X = (x1, . . . , xk ) ⊂ [n] and SGS S,
point stabilizer chain G = G[1] ≥ G[2] ≥ · · · ≥ G[k+1] = 1
Si = S ∩G[i], G[i] = 〈Si〉

If a base and SGS are known:
For each i ≤ k , we can compute the orbit
Oi := xiG[i] = xi〈Si〉 and Schreier trees coding how to
access elements of Oi from xi .
In particular, we have transversals Ti for G[i] mod G[i+1]

and we know the orbit lengths `i := |xi〈Si〉|.
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The group order

Since we know all orbit lengths, we know the indices
[G[i] : G[i+1]] = |G[i]|/|G[i+1]|.

Fact
We know the group order

|G| = [G[1] : G[2]] · [G[2] : G[3]] · · · [G[k ] : G[k+1]]
`1 · `2 · · · `k

.
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Decomposition of group elements

Even better, the orbit algorithm provided Schreier trees
and thus words in the stong generators to reach the orbit
points.
These words form transversals: We have elements t(i)

j for
1 ≤ i ≤ k and 1 ≤ j ≤ `i with:

G[i] =

`i⋃
j=1

G[i+1]t(i)
j (disjoint union).

Therefore, g ∈ G can be written uniquely in the form

g = t(k)
jk
· t(k−1)

jk−1
· · · t(1)

j1

for some numbers j1, j2, . . . , jk with 1 ≤ ji ≤ `i for all i .

Yet better, the stabilizer chain allows us to read off these
numbers!
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Sifting

Assume g ∈ G, thus:

g = t(k)
jk
· t(k−1)

jk−1
· · · t(1)

j1

for j1, j2, . . . , jk with 1 ≤ ji ≤ `i for 1 ≤ i ≤ k .

Since the first k − 1 of these lie in G[2], they all fix x1.

Thus x1g ∈ O1 depends only on j1 and not on the other ji !

So, we compute x1g ∈ O1, look it up and determine j1.
Now

g2 := gt(1)
j1

−1
= t(k)

jk
· t(k−1)

jk−1
· · · t(2)

j2

fixes x1 and thus lies in G[2].
We can now compute x2g2 ∈ O2 and determine j2, . . . , jk
inductively.
This procedure is called sifting.
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Membership test
If we sift an element g /∈ G (for example, if G ≤ Σn and
g ∈ Σn \G), then something will go wrong:

if x1g /∈ O1 = x1G then we proved that g /∈ G,
if x1g = x1t(1)

j for some 1 ≤ j ≤ `1 then,

since t(1)
j ∈ G and x1gt(1)

j
−1

= x1, we have

g ∈ G ⇐⇒ gt(1)
j
−1
∈ G[2].

=⇒ Inductively, we test membership in the stabilizer.

Theorem (Stabilizer chain and sifting)
Given G ≤ Σn, an element g ∈ Σn and a stabilizer chain
for G with its orbits and Schreier trees, we can sift g, and

either prove that g /∈ G,
or write g constructively in a unique way as product
of transversal elements

g = t(k)
jk
· t(k−1)

jk−1
· · · t(1)

j1
.
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How to compute a stabilizer chain

The basic idea:

Given G = 〈T 〉 ≤ Σn, we can pick the first base point as
any x1 ∈ [n] that is not fixed by T .

The Orbit-Stabilizer-Algorithm computes the first orbit O1
and transversal T1 of the data structure, and Schreier
generators for the group G[2] = Gx1 .

Pick x2 ∈ [n] not fixed by G[2]; repeat.

Problem: Blowup in the number of Schreier generators. It
is possible to reorganize the procedure to avoid the
blowup, and obtain a polynomial-time algorithm.
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Theorem (Sims)
Let G = 〈T 〉 ≤ Σn. A base and strong generating set for
G can be computed in time bounded by

O(n2 log3 |G|+ |T |n2 log |G|).

Theorem (Babai, Cooperman, Finkelstein, Seress)
Let G = 〈T 〉 ≤ Σn and d an arbitrary constant. A guess
for a strong generating set for G can be computed in time
bounded by

O(n log n log4 |G|+ |T |n log |G|)
so that the probability for a wrong output is ≤ 1/nd .
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Complexity measure of algorithms
time unit: computing the image xg of some x ∈ [n] under
some g ∈ Σn

memory unit: storing an integer ≤ n.

Input length: |T |n
Running time (and memory usage) depends not only on
input length, but on the size of the object the input
generates.

In addition, the BCFS algorithm is randomized, and it may
give incorrect answer (with probability controlled by the
user). Still, preferable when log |G| is small compared to
n.

No worry in GAP: in default setting, all permutation group
algorithms give guaranteed correct answers (using
various verification procedures to check the output).
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Classification of randomized algorithms

randomized algorithm is Monte Carlo: output may be
wrong, with probability controlled by user

randomized algorithm is Las Vegas: output is always
correct, may report failure with probability controlled by
user
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Small-base groups
Definition (Small-base family)
A family F of permutation groups is called a family of
small-base groups, if there is a constant c such that each
G ∈ F of degree n satisfies log |G| ≤ logc n.

Fact
For any non-redundant base X for a group G, (i.e. the
stabilizer chain defined by X is strictly decreasing),

log |G|
log n

≤ |X | ≤ log |G|.

Example (Small-base families)
All permutation representations of (almost) simple
groups, except alternating and symmetric groups.
Primitive groups G, unless Soc(G) contains large
alternating composition factors.
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Nearly linear-time algorithms

Definition (Nearly linear-time)
A permutation group algorithm is called nearly linear-time
if for inputs G ≤ Σn, the running time is O(n logc |G|) for
some absolute constant c.

For small-base group inputs, nearly linear-time algorithms
run in O(n logc′ n) time, which is the computer science
definition of nearly linear time.

In practice, most computations are performed with
small-base group inputs.
In general, log |G| can be proportional to n (or even
slightly worse). Nearly linear-time algorithms still run in
polynomial time on such inputs, but there are more
efficient algorithms to handle arbitrary inputs.
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Black-box groups
Definition
Black-box group representation of a group G:

Group elements are represented by words in an
alphabet A.
Given g,h ∈ G, oracle to compute words
representing gh, g−1, and decide g = 1?

Definition
A black-box group algorithm is an algorithm that uses
only black-box operations.

Why lose information?
(i) sometimes we cannot use more info (e.g. random

element generation).
(ii) Permutation group elements as words in strong

generators: faster group operation than permutation
multiplication.
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Permutation groups as black-box groups
Suppose a base X , an SGS S, and Schreier trees coding
the transversals Ti in the stabilizer chain were computed
for some G ≤ Σn.

Images of base points determine the elements of G
uniquely.
If X g = [xg

1 , . . . , x
g
k ] = X h = [xh

1 , . . . , x
h
k ] for some g,h ∈ G

then gh−1 fixes X pointwise, implying g = h.

X g is a very short encoding of g ∈ G but: given X g and
X h, we cannot easily compute X gh.

Compromise: Each element of G has normal form

g = t(k)
jk
· t(k−1)

jk−1
· · · t(1)

j1
(*)

for j1, j2, . . . , jk with 1 ≤ ji ≤ `i for 1 ≤ i ≤ k . Writing the
t(i)
ji

as words in the strong generators, we get a black-box
group representation of G over the alphabet S.
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Representation of group elements is unique. Need to
show how to compute products and inverses. To this end,
we also need to compute and store the permutations
S−1 := {s−1 | s ∈ S}. In fact, we may assume S = S−1.

We solve a slightly more general problem. Given any
word w over the alphabet S ∪ S−1 that multiplies to some
g ∈ G, we can compute the normal form (∗) of g (and w)
by sifting as a word:
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Sifting, revisited

Algorithm: SIFTASWORD

Input: Base X , SGS S = S−1, and transversals Ti for the
point stabilizer chain, encoded as Schreier trees with
labels in S. A word w over the alphabet S.

1 Assign z := w and L := []

2 For 1 ≤ i ≤ Length(X ) do
3 Compute yi := xiz by tracing images of points

along z
4 Look up t(i)

ji
∈ Ti with xi t

(i)
ji

= yi

5 Append
(

t(i)
ji

)−1
to z

6 Add t(i)
ji

to L
7 return the concatenation of elements of L in

reverse order
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Permutation groups as black-box groups, II

Given the normal forms wg ,wh of g,h ∈ G, sifting as
words the concatenation wgwh and w−1

g gives the normal
forms of gh and g−1.

Advantage: The BCFS algorithm computes an SGS so
that depth of Schreier trees for the Ti is O(log |G|).

With that data structure, group operations in the
black-box group G take O(logc |G|) time. For small-base
groups, group operations are much faster than
permutation multiplication. In a nearly linear-time
algorithm, we are allowed to use O(n) group operations.

Disadvantage: In the black-box representation of G, we
lose all information stored in the cycle structure and
action of elements. We cannot compute element orders,
orbits, blocks of imprimitivity, etc. Only pure black-box
algorithms are allowed.
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Composition series: credits

First algorithm to use the classification of simple groups
(CFSG) (Luks, 1981) but there is an elementary version
(Beals).

Many versions, contributions by Babai, Beals, Cannon,
Holt, Kantor, Luks, Neumann, Seress.
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Composition series: reduction to the perfect,
primitive case
To compute a composition series for some G = 〈T 〉 ≤ Σn,
we may apply homomorphisms

Ker(ϕ)← G
ϕ→ H

for an appropriate ϕ : G→ H to break up the problem to
two smaller problems on Ker(ϕ) and Im(ϕ).

Example (Combinatorial reductions)
G is intransitive, H = Sym(O) for an orbit O of G.
G is transitive but imprimitive, H = Sym(B) for a block
system B = B1 ∪ · · · ∪ Bm of G.

Further reduction: G primitive but not perfect. Compute
G′, fill up G/G′ with cyclic composition factors.

Remaining case: G primitive and perfect. We ran out of
cheap reductions.
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Primitive groups

Definition
A block system for a transitive G ≤ Σn is a partition B of
[n] = B1 ∪ B2 ∪ · · · ∪ Bk so that each g ∈ G permutes the
parts in B.
The group G is called primitive if the only block systems
for G are the trivial ones: |B| = 1 or |B| = n.

Equivalent definition: G is transitive, point stabilizers are
maximal subgroups of G. More generally, in a transitive
group G ≤ Σn, blocks containing a fixed ω ∈ [n] are in
one-to-one correspondence with the subgroups H
containing the point stabilizer Gω.
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Primitive groups, II

Fact
Nontrivial normal subgroups of a primitive G ≤ Σn are
transitive on [n].

More generally, in a transitive group G ≤ Σn, the orbits of
a normal N C G are blocks of imprimitivity for G.

O’Nan–Scott theorem: description of primitive groups
based on their socle, and the point stabilizer of the socle.

We need some preparatory steps.
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Centralizers

Fact
N C G =⇒ CG(N) C G.
G ≤ Σn transitive =⇒ C := CΣn (G) is semiregular:
Cω = 1 for all ω ∈ [n]. Moreover, ωC = fixed point set
of Gω.

Corollary
G transitive, abelian =⇒ CΣn (G) = G and G is
regular.
G ≤ Σn primitive =⇒ Z (G) = 1, unless n is prime
and G = Zn.
G ≤ Σn primitive, N C G, CG(N) 6= 1 =⇒ N,CG(N)
are regular.
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Subdirect products

Definition
T1, . . . ,Tm are nonabelian simple groups.
G ≤ T1 × · · · × Tm is called a subdirect product if
πi(G) = Ti for all i ≤ m (πi : projection to i th coordinate).

Fact
If G ≤ T1 × · · · × Tk is a subdirect product then there
exists a partition [m] = I1 ∪ · · · ∪ I`:

G = Diagi∈I1(Ti)× · · · × Diagi∈I`(Ti).

In particular, all Ti in the same index set Ik are
isomorphic.
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Socles

Definition
The socle Soc(G) of a group G is the subgroup generated
by all minimal normal subgroups of G.

Fact
Minimal normal subgroups are characteristically
simple: products of isomorphic simple groups.
Minimal normal subgroups intersect trivially, and
centralize each other.
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The O’Nan–Scott theorem

Proven in the late 1970’s; Jordan should have known it ...

Let G ≤ Σn be primitive.

Case 1: There exists a minimal normal subgroup N of G,
CG(N) 6= 1. Then N is regular.

(i) If N is abelian then Soc(G) = N = CG(N) ∼= Z d
p ,

n = pd .
N can be identified with the vector space GF(p)d , point
stabilizer Gω is an irreducible matrix group
Gω ≤ GL(d ,q).

(ii) If N is nonabelian then there are exactly two minimal
normal subgroups of G, and they are isomorphic: left-
and right-regular representations of T1 × · · · × Tm, Ti

∼= T
for some nonabelian simple T , n = |T |m.
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The O’Nan–Scott theorem, II

Case 2: For all N minimal normal in G, CG(N) = 1. Then
G has unique minimal normal subgroup

Soc(G) = N ∼= T1 × · · · × Tm,

Ti
∼= T for some nonabelian simple T .

G acts transitively on {T1, . . . ,Tm} by conjugation,
G ≤ Aut(T ) o Σm. m = 1 is possible.

(i) Nω = 1. Then N is regular; cannot happen for all T , m.
Smallest possibility: n = 606 = 46656000000.

In practice, we do not meet such G; in theory: frequently
G can be handled by fact that G ≤ H, H primitive with two
regular normal subgroups.
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The O’Nan–Scott theorem, III

(ii) Nω is a subdirect product of N.
m = k`, n = |T |(k−1)`, and after renumbering of the Ti

Nω = Diag(T1× · · · × Tk )× · · · ×Diag(Tm−k+1× · · · × Tm).

(iii) Nω = (T1)ω × · · · (Tm)ω,
1 < (Ti)ω < Ti , n = |T1 : (T1)ω|m.
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Large-base primitive groups

Theorem (Cameron (1981), using CFSG)
G ≤ Σn, G primitive =⇒ G is small-base, unless:
n =

(r
k

)m, Soc(G) = Am
r , G ≤ Σr o Σm

[n] can be identified with m-sequences of k-subsets of [r ].

Case 2(iii) of the O’Nan–Scott theorem, with T
alternating, and |T1 : (T1)ω| small.
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Detection of large alternating factors

First question: Is G a giant (alternating or symmetric in
natural action)?

Theorem (Jordan)
If a primitive group G ≤ Σn contains a p-cycle for some
prime 3 ≤ p ≤ n − 3 then G contains An.
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Algorithm: TESTGIANT

Input: G = 〈T 〉 acting transitively on [n]

repeat c log n times
r := PseudoRandom(G)

If Order(r ) is divisible by some
prime n/2 < p < n − 2

then return G is giant
else return G is probably not giant

Proof of correctness:
If “good” r is found then s := r (n−p)! is a p-cycle
s cannot act on non-trivial block system
output “giant” is guaranteed to be correct
If G is giant then a random element of G is good with
probability ≈ 1/ log n
output “not giant” is probably correct
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Detection of large alternating factors, II

If G is not giant, test for Cameron-type large-base groups:

Construct mr subsets of [n] such that G permutes them
as the natural imprimitive action of Σr o Σm.

Can be done by considering orbital graphs of G (action
on [n]× [n]). If construction fails: with high probability, G
is a small-base, primitive, perfect group.
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Composition series
Input: G ≤ Σn primitive, perfect (small-base).

Major reduction step:
Find generators for a proper normal subgroup; or
Find a faithful permutation representation of G on
≤ n/2 points; or
Prove that G is simple.

If N C G is found: compute index i in point stabilizer chain
G = G[1] > G[2] > · · · > G[m+1] = 1, G[j] = G(β1,...,βj−1), so
that

G[i]N = G, G[i+1]N < G.

New permutation domain Ω: orbits of G[i+1]N, within
βiG[i]. Action of G[i] on Ω is computable, N fixes Ω
pointwise, so action of G = 〈G[i],N〉 is known.

ϕ : G→ Sym(Ω) computable homomorphism, with
nontrivial image, kernel; reduction to smaller problems.
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O’Nan–Scott theorem, algorithmic version

G ≤ Σn primitive. Then at least one of the following holds.

G has a normal subgroup N with CG(N) 6= 1.
G has a normal subgroup of index ≤ n.
G is perfect, has a unique minimal subgroup
N = N1 × · · · × Nm and G acts as Am on
{N1, . . . ,Nm} by conjugation.
Three subcases as before, by the structure of Nω.
G is simple.

Advantage: Alternating action on {N1, . . . ,Nm} gives
information on suborbit lengths (orbit lengths of Gω).
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Case of normal subgroup with small index

Taking O(n) random elements of G, one of them is in a
proper normal subgroup with high probability. For
efficiency: consider G as black-box group, construct
random elements as words in strong generators.

Problem: Given g1, . . . ,gk elements of G, one of them in
a proper normal subgroup. How to construct one element
in a proper normal subgroup?

Beals trick: Replace g1 and g2 by [g1,g2]. Shorter list,
and if one of g1,g2 in proper normal subgroup then so is
[g1,g2]. Iterate.

Difficulty: [g1,g2] = 1.
Compute normal closure C of 〈g1〉. If [gt

1,g2] 6= 1 for
some generator gt

1 of C then use [gt
1,g2]. If [g2,C] = 1

then C 6= G because g2 6∈ Z (G); output g1.
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Other cases of computational O’Nan–Scott
theorem

Take 2-point stabilizer Gαβ with |G : Gαβ| < n log2 n;
embed into maximal subgroup K containing a normal
subgroup of G.

Of course, I oversimplified. E.g., special considerations
for Frobenius groups.

We also may end up in maximal subgroup K with G acting
faithfully on cosets of K ; but in this case |G : K | ≤ n/2.
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A side remark

We can upgrade SGS constructions to a Las Vegas
algorithm (guaranteed correct output).

Theorem (Kantor, Seress (1999))
Base, SGS in O(n logc |G|) Las Vegas time, provided
there are no 2G2,

2F4 composition factors.

Compute composition series by a Monte Carlo algorithm,
verify correctness by constructively recognizing
composition factors.

Newer development: 2F4 composition factors are OK.
Missing step: Is there a short presentation of the groups
2G2?
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Some characteristic subgroups

Every finite group has a series of characteristic
subgroups

1 ≤ Rad(G) ≤ Soc∗(G) ≤ PKer(G) ≤ G

Rad(G): largest solvable normal subgroup

Soc∗(G)/Rad(G): socle of G/Rad(G)
Soc∗(G)/Rad(G) ∼= T1 × · · · × Tk
Ti nonabelian simple, G permutes them by conjugation

PKer(G): kernel of this permutation action
PKer(G)/Soc∗(G) ≤ Out(T1)× · · · × Out(Tk ) solvable
(CFSG)
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Composition series containing the special
subgroups

For many algorithms (including automorphism group
computations) it is beneficial to construct a chief series
containing Rad(G),Soc∗(G),PKer(G).

Major step: Construction of Rad(G), permutation
representation for G/Rad(G).

For arbitrary N C G ≤ Σn, G/N may not have faithful
permutation representation of size polynomial in n.
Fortunately, G/Rad(G) has a faithful representation on n
points.
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Construction of Rad(G)

Suppose N C G ≤ Σn, N ∼= Z m
p elementary abelian.

Define new permutation domain Ω for G, |Ω| = n:
[n] = O1 ∪ . . . ∪Ok : orbits of N.
N acts regularly on each Oi , N |Oi consists of |Oi |
permutations Ωi ; let Ω =

⋃k
i=1 Ωi .

Fact
G acts by conjugation on Ω. Kernel of this action is
elementary abelian p-group, containing N.
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Construction of Rad(G), II

Lemma
Suppose N C G maximal normal, Rad(N) = 1.

(i) If G/N is nonabelian then Rad(G) = 1.
(ii) If G/N is cyclic then Rad(G) = CG(N) (either trivial,

or isomorphic to G/N).

Note: Centralizer of a normal subgroup can be computed
in nearly linear time.
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Construction of Rad(G), III

Algorithm: RADICAL

Input: G = 〈g1, . . . ,gk 〉 ≤ Σn.
1 Compute composition series

1 C N1 C · · ·C Nm−1 C Nm = G.

2 Find smallest i with Rad(Ni) 6= 1.
[[ Rad(Ni) ∼= Zp,Rad(Ni) C CG ]]

3 Compute normal closure N := 〈Rad(Ni)
G〉.

[[ N is a p-group ]]
4 In N, find elementary abelian subgroup K , K C G.
5 Construct permutation representation for G, with K in

kernel.
6 Iterate.
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Automorphism group of G/Rad(G)

Recall:

1 ≤ Rad(G) ≤ Soc∗(G) ≤ PKer(G) ≤ G

and
Soc(G/Rad(G)) = T1 × · · · × Tk ,

all Ti nonabelian simple.

Aut(G/Rad(G)) ≤

(
k∏

i=1

Aut(Ti)

)
.

∏̀
j=1

Σkj


containing

∏
Inn(Ti) ∼=

∏
Ti .
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Automorphism group of G/Rad(G), II

We need to recognize the groups Ti constructively: find
identification with standard copy of Ti . Can be done in
nearly linear time.
The full automorphism group of the standard copy of Ti
can be constructed.
We can work in the factor group(

k∏
i=1

Out(Ti)

)
.

∏̀
j=1

Σkj

 .

“Work” means: Permutation representation for
(
∏

Out(Ti)).(
∏

Σkj ) can be constructed and enough to
construct the normalizer of G/Soc∗(G) in this group.
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Automorphism group of G

Construct 1 = L0 < L1 < · · · < Lm = Rad(G) satisfying
(i) Li char G;
(ii) Li+1/Li elementary abelian (so Li+1/Li can be

considered as a vector space Vi and G acts on Vi by
conjugation, as a subgroup Gi ≤ GL(Vi));

(iii) Gi is an irreducible matrix group.
Satisfying (i),(ii) and construction of the matrix group Gi is
easy: refine derived series of Rad(G).

For (iii), apply the matrix group program MeatAxe, to
compute a composition series of the Gi -module Vi .
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Proceeding downwards on the series of factor groups

G/Lm = G/Rad(G),G/Lm−1, . . . ,G/L0 = G,

Computation of Aut(G) reduced to:

Problem
L char G, L elementary abelian, Aut(G/L) is known.
Compute Aut(G).

Solution of the same problem is needed in the polycyclic
case, the two cases merge.
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Polycyclic groups

Definition
A group G is called polycyclic if there exists a chain of
subgroups

G = G1 ≥ G2 ≥ · · · ≥ Gn ≥ Gn+1 = 1

so that Gi+1 C Gi and Gi/Gi+1 is cyclic for 1 ≤ i ≤ n.

The group G may be infinite. Polycyclic groups are the
solvable groups with the additional property that every
subgroup is finitely generated.

Example
G = A4 = 〈(1,2)(3,4), (1,3)(2,4), (1,2,3)〉. Then
G = G1, G2 = 〈(1,2)(3,4), (1,3)(2,4)〉,
G3 = 〈(1,2)(3,4)〉, G4 = 1 is a polycyclic series.
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PCGS (PolyCyclic Generating Sequence)

Let G be polycyclic, with polycyclic series
G = G1 ≥ G2 ≥ · · · ≥ Gn ≥ Gn+1 = 1.

Definition
A sequence of elements X = [x1, . . . , xn] is called a
PCGS if 〈xi ,Gi+1〉 = Gi for 1 ≤ i ≤ n.

Definition
With G,X as above, the sequence R(X ) = [r1, . . . , rn],
with ri := [Gi : Gi+1] ∈ Z+ ∪ {∞}, is called the sequence
of relative orders.

ri is the smallest power k so that xk
i ∈ Gi+1.
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Example
X = [(1,2,3), (1,2)(3,4), (1,3)(2,4)] is a PCGS for A4,
with relative orders R(X ) = [3,2,2]. In this case, the
order of xi is the i th relative order.

Example

X =

[(
1 0
0 -1

)
,

(
1 -1
0 -1

)]
is a PCGS for the infinite dihedral group D∞, with relative
orders R(X ) = [2,∞].

G is finite if and only if all ri are finite.

If G is finite then
|G| =

∏
ri∈R(X)

ri ,

the product of the relative orders.
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Length of a PCGS

The group G does not determine uniquely the length of a
PCGS for G.

Example
Let G = D8 = 〈(1,2,3,4), (1,3)〉. Then

X1 = [(1,2)(3,4), (1,3), (2,4)], R(X1) = [2,2,2];
X2 = [(1,2)(3,4), (1,2,3,4)], R(X2) = [2,4];
X3 = [(1,2,3,4), (1,2)(3,4), (1,3)(2,4)],
R(X3) = [2,2,2]

are PCGS for G.
In X3 = [x1, x2, x3], the relative order r1 = 2, but |x1| = 4.
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Decomposition of group elements

Lemma
Let X = [x1, . . . , xn] be a PCGS for a group G. Then
every g ∈ G can be written uniquely in the form
g = xe1

1 xe2
2 · · · x

en
n , with exponents ei satisfying 0 ≤ ei < ri

if ri is finite; ei ∈ Z if ri =∞.

Proof: Analogue of sifting in permutation groups.
Powers of xi : left coset representatives for Gi mod Gi+1.
There is a unique coset xe1

1 G2 containing g.
x−e1

1 g ∈ G2; proceed by induction.
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Example of decomposition

Example
Let G = D8 = 〈(1,2,3,4), (1,3)〉.
X3 = [(1,2,3,4), (1,2)(3,4), (1,3)(2,4)], R(X3) = [2,2,2]
is a PCGS for G.
G1 = G, G2 = 〈(1,2)(3,4), (1,3)(2,4)〉,
G3 = 〈(1,3)(2,4)〉, G4 = 1.

Let e.g. g = (1,4,3,2). Then
x−1

1 (1,4,3,2) = (1,3)(2,4) ∈ G2, so e1 = 1.
x−0

2 (1,3)(2,4) = (1,3)(2,4) ∈ G3, so e2 = 0.
x−1

3 (1,3)(2,4) = () ∈ G4, so e3 = 1.

g = x1
1 x0

2 x1
3
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Normal form

Definition
The expression g = xe−1

1 xe2
2 · · · x

en
n is the normal form of

g, with exponent vector expX (g) = [e1,e2, . . . ,en] with
respect to X .

Expressing certain powers and conjugates of elements of
X in normal form, we obtain a presentation for G.
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Polycyclic presentation

Definition
A presentation 〈x1, . . . , xn〉 | R〉 is called a polycyclic
presentation if there exist ri ∈ N ∪ {∞}, for 1 ≤ i ≤ n, so
that R consists of the relations
(a) x ri

i = xai,i+1
i+1 · · · x

ai,n
n if ri is finite, 1 ≤ i ≤ n

(b) x−1
j xixj = xbi,j,j+1

j+1 · · · xbi,j,n
n for 1 ≤ j < i ≤ n

(c) x−1
j xixj = xix

ci,j,i+1
i+1 · · · xci,j,n

n for 1 ≤ i < j ≤ n

Notation
G = Pc〈x1, . . . , xn | R〉

(Pc presentation = power-conjugate presentation)
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PCGS vs polycyclic presentation

Theorem
Every PCGS determines a unique polycyclic
presentation.

Caution with the converse!

Any given Pc〈x1, . . . , xn | R〉 defines a group with PCGS
X = [x1, . . . , xn] but the relative orders R(X ) = [r1, . . . , rn]
may be smaller than the exponents in part (a) of the
presentation.

Two different normal words may represent the same
group element. Called inconsistent presentation.
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Example of inconsistent presentation
Example

G = Pc〈x1, x2, x3 | x2
1 = x2, x3

2 = x3,

xx1
2 = x2, x

x1
3 = x2x3, x

x2
3 = x3,

xx2
1 = x1x3, x

x3
1 = x1, x

x3
2 = x2〉

We may expect R(X ) = [2,3,∞].

But: xx2
1 = x1x3, implying [x1, x2] = x3.

Also xx1
2 = x2, implying [x2, x1] = 1. Hence x3 = 1.

Hence xx1
3 = x2x3 implies 1 = x2.

R(X ) = [2,1,1]

There are efficient methods to determine whether a Pc
presentation is consistent (and make it consistent, if it is
not).
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PCGS, polycyclic presentation for p-groups
Exponent-p lower central series of a p-group G:
P1 = G, Pj+1 = [G,Pj ]P

p
j for j ≥ 1.

Pj C G, Pj/Pj+1 elementary abelian for all j

We work with PCGS refining the exponent-p lower central
series.
Advantage: for such PCGS X = [x1, . . . , xn], all relative
orders are p and
x−1

j xixj = xix
ci,j,i+1
i+1 · · · xci,j,n

n
holds for both i < j and j < i .

Definition
A power-commutator presentation is a presentation with
relators
(a) xp

i = xαi,i+1
i+1 · · · xαi,n

n , 0 ≤ αi,k < p for 1 ≤ i ≤ n

(b) [xj , xi ] = xβi,j,j+1
j+1 · · · xβi,j,n

n for 1 ≤ i < j ≤ n
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Writing words in normal form

Given a PCGS X = [x1, . . . , xn] for G and a polycyclic
presentation G = Pc〈X | R〉, we know that every word w
in X represents a group element g and g has normal form
g = xe1

1 · · · x
en
n .

Theoretical justification is an analogue of sifting in
permutation groups, but no computational analogue:
there is no easy way to find which coset xe1

1 G2 contains g
(and so no easy way to find the exponents ei ).

The method to write words in normal form is called
collection.
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Collection

If a word w is in normal form then it is called collected;
otherwise w is uncollected.

Uncollected words contain occurrences of minimal
non-normal subwords: subwords u of w that are one of
the following forms.
(a) xixj , x−1

i xj , xix−1
j , or x−1

i x−1
j with i > j

(b) xa
i for ri 6=∞ and a 6∈ {1,2, . . . , ri − 1}.

One step of collection: replace a minimal non-normal
subword by a collected one.
Collection: Repeat, until all minimal non-normal
subwords are gone.
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Collection strategies

Collection to the left (P. Hall): push occurrences of x1 to
the left, to get w ′ = xe1

1 w ′′, where w ′′ is a word in
x2, . . . , xn. Proceed recursively.

Collection from the left (Leedham-Green, Soicher;
Vaughan-Lee): replace the leftmost minimal non-normal
subword.

Collection from the right (Havas, Nicholson): replace the
rightmost minimal non-normal subword.

Theorem
No matter which order we process minimal non-normal
subwords, collection terminates.

Practical observation: Collection from the left is most
efficient.
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Example of collection

G = D16 = Pc〈x1, x2, x3, x4 | x2
1 = 1, x2

2 = x3x4,

x2
3 = x4, x2

4 = 1,
[x2, x1] = x3, [x3, x1] = x4, [x3, x2] = 1,

[x4, x1] = 1, [x4, x2] = 1, [x4, x3] = 1〉

Collect the word w = x3x2x1.

To the left: 321 = 3123 = 13423 = 13243 = 12343 =
12334 = 1244 = 12
7 steps

From the right: 321 = 3123 = 13423 = 13243 = 13234 =
12334 = 1244 = 12
7 steps

From the left: 321 = 231 = 2134 = 12334 = 1244 = 12
5 steps
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Checking consistency, p-group version

Theorem (Wamsley; Vaughan-Lee)
A power-commutator presentation on [x1, . . . , xn] is
consistent if and only if the following holds.

(xkxj)xi = xk (xjxi) for 1 ≤ i < j < k ≤ n

(xp−1
j xj)xi = xp−1

j (xjxi) for 1 ≤ i < j ≤ n

(xjx
p−1
i )xi = xj(x

p−1
i xi) for 1 ≤ i < j ≤ n

(xix
p−1
i )xi = xi(x

p−1
i xi) for 1 ≤ i ≤ n

Interpretation: Collect both sides of each equation,
starting with the minimal non-normal subword indicated
by the parenthesis. Check whether the results of the two
collections equal.
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Algorithms for p-groups

Many algorithms are available, and in a lot of cases they
are faster than the ones for the permutation
representations of the same abstract p-group.

Recall that for G = Pc〈X | R〉, the subgroup chain defined
by the PCGS X is a refinement of the exponent-p lower
central series P1 = G, Pj+1 = [G,Pj ]P

p
j for j ≥ 1 and

Pj C G, Pj/Pj+1 elementary abelian for all j .

Most algorithms follow the inductive principle:
Solve the problem for P1/P2
Using the solution for P1/Pk , solve the problem for
P1/Pk+1.

Examples: compute conjugacy classes, automorphism
groups, find a consistent presentation from an
inconsistent one.
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Construction of automorphism groups

Problem remaining in the permutation group case, and
the problem to be solved in the polycyclic case:

Problem
L char G, L elementary abelian, Aut(G/L) is known.
Compute Aut(G).

General solution is quite nasty, involving cohomology
computations. Case of p-groups is easier, both
conceptually and computationally.
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Automorphism group of p-groups

Basic algorithm: O’Brien, late 1980’s
Refinements: Eick, Leedham-Green, O’Brien 2002

Algorithm: AUT-P-GROUP

Input: G p-group, Z char G, Z elementary abelian,
central, F = G/Z , Aut(F ).

Output: Aut(G).

G is given by a Pc presentation, refining the exponent p
lower central series; Z is the last term of this series.



Automorphism
groups

Ákos Seress

Introduction

Permutation
groups
Orbits

The orbit algorithm

Computing the stabilizer

Stabilizer Chains
Base and SGS

Order

Membership test

Computing StabChains

Nearly linear-time
Small-base groups

Black-box groups

Composition
series
Primitive groups

The O’Nan–Scott theorem

Large-base primitive groups

The algorithm

Some
characteristic
subgroups
Construction of Rad(G)

Aut(G/Rad(G))

Polycyclic Groups

Finite p-groups

Algorithms for
p-groups

Automorphism
group of p-groups

p-covering group of F

Definition
The p-covering group C of F is the largest elementary
abelian, central Frattini extension of F : M C C, M ≤ Φ(C),
C/M ∼= F , M elementary abelian.

Formally, if F is d-generated as a factor group Fd/R of
the d-generated free group Fd , then C = [R,Fd ]Rp.
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Construction of the p-covering group of F

F = 〈x1, . . . , xd〉 is given by the PCGS [x1, . . . , xn] and Pc
presentation R = {R1, . . . ,Rm}.

(i) For each relator RI , introduce new generator yI .
(ii) Append yI to end of RI :

xp
i = xαi,i+1

i+1 · · · xαi,n
n yI or

[xj , xi ] = xβi,j,j+1
j+1 · · · xβi,j,n

n yI

(iii) Add relators showing that 〈y1, . . . , ym〉 is elementary
abelian: yp

I = 1, [yI , yJ ] = 1.
(iv) Add relators showing that 〈y1, . . . , ym〉 is central:

[xi , yI ] = 1.
(v) Make this presentation consistent.
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Connection between G and C

Both G and C are central extensions of F = 〈x1, . . . , xd〉.

Define γ : G→ F , ψ : C → F natural homomorphisms to
a factor group.

Let xi , 1 ≤ i ≤ d , be arbitrary γ-preimage of xi . Note that
〈xi | 1 ≤ i ≤ d〉 = G because Z ≤ Φ(G).

Let x∗i , 1 ≤ i ≤ d , be arbitrary ψ-preimage of xi . Note that
〈x∗i | 1 ≤ i ≤ d〉 = C because M ≤ Φ(C).

Define
ε : C → G

x∗i 7→ xi

Then ε is an epimorphism, Mε = Z .

Define U = ker(ε) ≤ M.
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Action of Aut(F ) on M and Aut(G)
Each α ∈ Aut(F ) induces an automorphism αM ∈ Aut(M):

m ∈ M ⇒ m = w(x∗1 , . . . , x
∗
d ) for some word w .

x∗i ψ ∈ F , x∗i ψα ∈ F , define h∗i ∈ C so that h∗i ψ = x∗i ψα.

Then mαM := w(h∗1, . . . ,h
∗
d ) ∈ M.

Action of Aut(F ) on M is computable.

Computationally most difficult step: Compute
S := StabAut(F )(U). Most improvements try to reduce the
size of the orbit of U, by exploiting characteristic
subgroups that have to be preserved by any
automorphism.

Let T = {β ∈ Aut(G) | β centralizes F}. T is computable
with reasonable effort.

Theorem
Let ν : Aut(G)→ Aut(F ) be the natural homomorphism.
Then T = ker(ν) and S = im(ν), so Aut(G) = TR for
Rν = S.
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Conclusion

The main purpose of these lectures was to make the
audience aware of the wonderful computer algebra tools
available.

The computer algebra systems GAP and Magma may be
used to formulate and check conjectures, create
counterexamples, gain insights for proofs in many
branches of discrete mathematics, number theory and
algebra. Besides these two general-purpose programs,
there are many other, more specialized systems.

Over a thousand citations in group theory, representation
theory, topology, algebraic graph theory, designs,
cryptography, large combinatorial searches, exotic (partial
differential equations, music), teaching.
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Short overview, easy bedtime reading : −)
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